Combining SMAP and Sentinel Data for High-Resolution Soil Moisture Product

被引:22
|
作者
Das, N. N. [1 ]
Entekhabi, D. [2 ]
Kim, S. [1 ]
Yueh, S. [1 ]
O'Neill, P. [3 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
关键词
D O I
10.1109/IGARSS.2016.7729024
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:129 / 131
页数:3
相关论文
共 50 条
  • [21] A machine learning-based approach for generating high-resolution soil moisture from SMAP products
    Zhang, Yueyuan
    Chen, Yangbo
    Chen, Lingfang
    Xu, Shichao
    Sun, Huaizhang
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 16086 - 16107
  • [22] An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations
    Pan, Ming
    Cai, Xitian
    Chaney, Nathaniel W.
    Entekhabi, Dara
    Wood, Eric F.
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (18) : 9662 - 9668
  • [23] Estimating high-resolution soil moisture by combining data from a sparse network of soil moisture sensors and remotely sensed MODIS LST information
    Gemitzi, Alexandra
    Kofidou, Maria
    Falalakis, George
    Fang, Bin
    Lakshmi, Venkat
    HYDROLOGY RESEARCH, 2024, 55 (09): : 905 - 920
  • [24] Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data
    Pinnington, Ewan
    Amezcua, Javier
    Cooper, Elizabeth
    Dadson, Simon
    Ellis, Rich
    Peng, Jian
    Robinson, Emma
    Morrison, Ross
    Osborne, Simon
    Quaife, Tristan
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (03) : 1617 - 1641
  • [25] Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
    Lievens, H.
    Reichle, R. H.
    Liu, Q.
    De Lannoy, G. J. M.
    Dunbar, R. S.
    Kim, S. B.
    Das, N. N.
    Cosh, M.
    Walker, J. P.
    Wagner, W.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (12) : 6145 - 6153
  • [26] Evaluation and calibration of a high-resolution soil moisture product for wildfire prediction and management
    Vinodkumar
    Dharssi, Imtiaz
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 264 : 27 - 39
  • [27] SENTINEL-1 HIGH RESOLUTION SOIL MOISTURE
    Mattia, F.
    Balenzano, A.
    Satalino, G.
    Lovergine, F.
    Loew, A.
    Peng, J.
    Wegmuller, U.
    Santoro, M.
    Cartus, O.
    Dabrowska-Zielinska, K.
    Musial, J.
    Davidson, M. W. J.
    Yueh, S.
    Kim, S.
    Das, N.
    Colliander, A.
    Johnson, J.
    Ouellette, J.
    Walker, J.
    Wu, X.
    McNairn, H.
    Merzouki, A.
    Powers, J.
    Caldwell, T.
    Entekhabi, D.
    Cosh, M.
    Jackson, T.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5533 - 5536
  • [28] Development of a new vegetation modulated soil moisture index for the spatial disaggregation of SMAP soil moisture data product
    Sharma, J.
    Prasad, R.
    Srivastava, P. K.
    Yadav, S. A.
    Singh, S. K.
    Verma, B.
    PHYSICS AND CHEMISTRY OF THE EARTH, 2024, 135
  • [29] HIGH-RESOLUTION SCANNER DATA FOR THE DETECTION OF SOIL-MOISTURE VARIATION
    TIMMINS, SM
    FITZGERALD, PD
    NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH, 1984, 27 (01) : 125 - 131
  • [30] SOIL MOISTURE DATA PRODUCT GENERATED FROM NASA SMAP OBSERVATIONS WITH NOAA ANCILLARY DATA
    Zhan, Xiwu
    Liu, Jicheng
    Wen, Jun
    Zhao, Limin
    Vargas, Marco
    Weng, Fuzhong
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5237 - 5240