Generalized Space-Time Fractional Stochastic Kinetic Equation

被引:0
|
作者
Liu, Junfeng [1 ]
Yao, Zhigang [1 ]
Zhang, Bin [1 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
关键词
space-time fractional stochastic kinetic equations; caputo derivatives; gaussian index; holder continuity; PRINCIPLE;
D O I
10.3390/fractalfract6080450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a class of nonlinear space-time fractional stochastic kinetic equations in R-d with Gaussian noise which is white in time and homogeneous in space. This type of equation constitutes an extension of the nonlinear stochastic heat equation involving fractional derivatives in time and fractional Laplacian in space. We firstly give a necessary condition on the spatial covariance for the existence and uniqueness of the solution. Furthermore, we also study various properties of the solution, such as Holder regularity, the upper bound of second moment, and the stationarity with respect to the spatial variable in the case of linear additive noise.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Space-Time Fractional Schrödinger Equation With Composite Time Fractional Derivative
    Johan L. A. Dubbeldam
    Zivorad Tomovski
    Trifce Sandev
    Fractional Calculus and Applied Analysis, 2015, 18 : 1179 - 1200
  • [22] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [23] Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation
    Tatar, SalIh
    Tinaztepe, Ramazan
    Ulusoy, Suleyman
    APPLICABLE ANALYSIS, 2016, 95 (01) : 1 - 23
  • [24] On the space-time fractional Schrodinger equation with time independent potentials
    Baqer, Saleh
    Boyadjiev, Lyubomir
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 81 - 90
  • [25] An Efficient Space-Time Method for Time Fractional Diffusion Equation
    Shen, Jie
    Sheng, Chang-Tao
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 1088 - 1110
  • [26] Fractional (space-time) Fokker-Planck equation
    El-Wakil, SA
    Elhanbaly, A
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2001, 12 (06) : 1035 - 1040
  • [27] THE CALDERON PROBLEM FOR A SPACE-TIME FRACTIONAL PARABOLIC EQUATION
    Lai, Ru-Yu
    Lin, Yi-Hsuan
    Rueland, Angkana
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) : 2655 - 2688
  • [28] Semianalytic Solution of Space-Time Fractional Diffusion Equation
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016
  • [29] Space-Time Fractional DKP Equation and Its Solution
    Bouzid, N.
    Merad, M.
    FEW-BODY SYSTEMS, 2017, 58 (03)
  • [30] Formulation and solution of space-time fractional Boussinesq equation
    El-Wakil, S. A.
    Abulwafa, Essam M.
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 167 - 175