On Okounkov's Conjecture Connecting Hilbert Schemes of Points and Multiple q-Zeta Values

被引:1
|
作者
Qin, Zhenbo [1 ]
Yu, Fei [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Zhejiang Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGEBRAS;
D O I
10.1093/imrn/rnw244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the generating series for the intersection pairings between the total Chern classes of the tangent bundles of the Hilbert schemes of points on a smooth projective surface and the Chern characters of tautological bundles over these Hilbert schemes. Modulo the lower weight term, we verify Okounkov's conjecture [13] connecting these Hilbert schemes and multiple q-zeta values. In addition, this conjecture is completely proved when the surface is abelian. We also determine some universal constants in the sense of Boissiere and Nieper-Wisskirchen [1, 2] regarding the total Chern classes of the tangent bundles of these Hilbert schemes. The main approach of this article is to use the set-up of Carlsson and Okounkov outlined in Carlsson [5, 6] and the structure of the Chern character operators proved in Li, Qin, and Wang [10].
引用
收藏
页码:321 / 361
页数:41
相关论文
共 50 条
  • [41] Partitions, multiple zeta values and the q-bracket
    Bachmann, Henrik
    van Ittersum, Jan-Willem
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (01):
  • [42] Partitions, multiple zeta values and the q-bracket
    Henrik Bachmann
    Jan-Willem van Ittersum
    Selecta Mathematica, 2024, 30
  • [43] Renormalisation of q-Regularised Multiple Zeta Values
    Kurusch Ebrahimi-Fard
    Dominique Manchon
    Johannes Singer
    Letters in Mathematical Physics, 2016, 106 : 365 - 380
  • [44] Renormalisation of q-Regularised Multiple Zeta Values
    Ebrahimi-Fard, Kurusch
    Manchon, Dominique
    Singer, Johannes
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (03) : 365 - 380
  • [45] Interpolation of q-analogue of multiple zeta and zeta-star values
    Wakabayashi, Noriko
    JOURNAL OF NUMBER THEORY, 2017, 174 : 26 - 39
  • [46] Quadratic relations for a q-analogue of multiple zeta values
    Takeyama, Yoshihiro
    RAMANUJAN JOURNAL, 2012, 27 (01): : 15 - 28
  • [47] Quadratic relations for a q-analogue of multiple zeta values
    Yoshihiro Takeyama
    The Ramanujan Journal, 2012, 27 : 15 - 28
  • [48] Topological properties of q-analogucs of multiple zeta values
    Li, Zhonghua
    Pan, Ende
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (05) : 963 - 980
  • [49] Hilbert's Tenth Problem and Mazur's conjecture for large subrings of Q
    Poonen, B
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) : 981 - 990
  • [50] UNFOLDING THE DOUBLE SHUFFLE STRUCTURE OF q-MULTIPLE ZETA VALUES
    Castillo-Medina, Jaime
    Ebrahimi-Fard, Kurusch
    Manchon, Dominique
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 368 - 388