Li-Yorke chaos in linear dynamics

被引:54
|
作者
Bernardes, N. C., Jr. [1 ]
Bonilla, A. [2 ]
Mueller, V. [3 ]
Peris, A. [4 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21945970 Rio De Janeiro, RJ, Brazil
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
[3] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[4] Univ Politecn Valencia, IUMPA, Dept Matemat Aplicada, Valencia 46022, Spain
关键词
HYPERCYCLIC OPERATORS; DISTRIBUTIONAL CHAOS; INVARIANT;
D O I
10.1017/etds.2014.20
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain new characterizations of Li-Yorke chaos for linear operators on Banach and Frechet spaces. We also offer conditions under which an operator admits a dense set or linear manifold of irregular vectors. Some of our general results are applied to composition operators and adjoint multipliers on spaces of holomorphic functions.
引用
收藏
页码:1723 / 1745
页数:23
相关论文
共 50 条
  • [11] Sensitivity, Devaney's chaos and Li-Yorke ε-chaos
    Wang, Huoyun
    Liu, Qing
    Li, Huahai
    Fu, Heman
    SEMIGROUP FORUM, 2020, 100 (03) : 888 - 909
  • [12] Characteristics of (α, β)-Mean Li-Yorke Chaos of Linear Operators on Banach Spaces
    He, Shengnan
    Sun, Xiaoli
    Xiao, Mingqing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (08):
  • [13] Li-Yorke chaos and topological distributional chaos in a sequence
    Yadav, Naveenkumar
    Shah, Sejal
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1360 - 1368
  • [14] Dense Uniform Li-Yorke Chaos for Linear Operators on a Banach Space
    Li, Jian
    Wang, Xinsheng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (02):
  • [15] MEAN PROXIMALITY AND MEAN LI-YORKE CHAOS
    Garcia-Ramos, Felipe
    Jin, Lei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (07) : 2959 - 2969
  • [16] Li-Yorke Chaos in Linear Systems with Weak Topology on Hilbert Spaces
    Yang, Qigui
    Zhu, Pengxian
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (10):
  • [17] LI-Yorke sensitivity and other concepts of chaos
    Kolyada S.F.
    Ukrainian Mathematical Journal, 2004, 56 (8) : 1242 - 1257
  • [18] On the invariance of Li-Yorke chaos of interval maps
    Du, BS
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (09) : 823 - 828
  • [19] LI-YORKE CHAOS FOR ULTRAGRAPH SHIFT SPACES
    Goncalves, Daniel
    Uggioni, Bruno Brogni
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 2347 - 2365
  • [20] Li-Yorke chaos in a spatiotemporal chaotic system
    Li, Ping
    Li, Zhong
    Halang, Wolfgang A.
    Chen, Guanrong
    CHAOS SOLITONS & FRACTALS, 2007, 33 (02) : 335 - 341