Sintering of zirconia ceramics by intense high-energy electron beam

被引:16
|
作者
Surzhikov, A. P. [1 ]
Frangulyan, T. S. [1 ]
Ghyngazov, S. A. [1 ]
Vasil'ev, I. P. [1 ]
Chernyavskii, A. V. [1 ]
机构
[1] Natl Res Tomsk Polytech Univ, Lenin Ave 30, Tomsk 634050, Russia
关键词
Zro(2); High-energy electron beam sintering; Hardness; Grain size; GRAIN-GROWTH; DIFFUSION; RADIATION; NANOCRYSTALLINE; DENSIFICATION; KINETICS; SOLIDS; POWDER; SYSTEM; FIELD;
D O I
10.1016/j.ceramint.2016.05.198
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A comparative analysis of the efficiency of zirconia ceramics sintering by thermal method and high-energy electron beam sintering was performed for compacts prepared from commercial TZ-3Y-E grade powder. The electron energy was 1.4 MeV. The samples were sintered in the temperature range of 1200-1400 degrees C. Sintering of zirconia ceramics by high-energy accelerated electron beam is shown to reduce the firing temperature by about 200 degrees C compared to that in conventional heating technique. Ceramics sintered by accelerated electron beam at 1200 degrees C is of high density, microhardness and smaller grain size compared to that produced by thermal firing at 1400 degrees C. Electron beam sintering at higher temperature causes deterioration of ceramics properties due to radiation-induced acceleration of high-temperature recrystallization at higher temperatures. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:13888 / 13892
页数:5
相关论文
共 50 条
  • [31] Spectroscopy at the high-energy electron beam ion trap (SuperEBIT)
    Widmann, K
    Beiersdorfer, P
    LopezUrrutia, JRC
    Elliott, SR
    HYPERFINE INTERACTIONS, 1997, 108 (1-3): : 73 - 86
  • [32] SCANNING SYSTEM FOR HIGH-ENERGY PULSED ELECTRON-BEAM
    ROZENBLAT, AM
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1989, 32 (01) : 44 - 46
  • [33] Spectroscopy at the high-energy electron beam ion trap (SuperEBIT)
    K. Widmann
    P. Beiersdorfer
    J.R. Crespo López-Urrutia
    S.R. Elliott
    Hyperfine Interactions, 1997, 108 : 73 - 86
  • [34] ELECTRON CONTAMINATION OF A HIGH-ENERGY X-RAY BEAM
    PADIKAL, TN
    DEYE, JA
    PHYSICS IN MEDICINE AND BIOLOGY, 1978, 23 (06): : 1086 - 1092
  • [35] POSITIVELY CHARGED MICROPARTICLE IN PLASMA WITH HIGH-ENERGY ELECTRON BEAM
    Bizyukov, Aleksander A.
    Chibisov, Dmitry, V
    Chibisov, Oleksandr D.
    Zhernovnykova, Oksana A.
    Borysenko, Kostyantyn, V
    Bobyliev, Dmytro Ye.
    Shtonda, Oksana H.
    EAST EUROPEAN JOURNAL OF PHYSICS, 2024, (03): : 160 - 165
  • [36] High-Energy Electron Beam Relaxation in a Stationary Plasma Thruster
    Nazarenko I.P.
    Gavryushin V.M.
    Evdokimov K.V.
    Russian Aeronautics, 2017, 60 (4): : 609 - 615
  • [37] The effect of high-energy electron beam radiation on polymer properties
    Czuprynska, J
    POLIMERY, 2002, 47 (01) : 8 - 14
  • [38] PULSED MICROSECOND HIGH-ENERGY ELECTRON-BEAM ACCELERATOR
    MARTIN, TH
    CLARK, RS
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1976, 47 (04): : 460 - 463
  • [39] TRANSFORMATIONS IN ALUMINA EXPOSED TO A HIGH-ENERGY ELECTRON-BEAM
    BELAN, GB
    POLYAKOVA, AA
    KOGAN, LO
    HIGH ENERGY CHEMISTRY, 1979, 13 (02) : 81 - 83
  • [40] MODIFICATION OF DOSE DISTRIBUTION IN HIGH-ENERGY ELECTRON BEAM TREATMENT
    OKUMURA, Y
    MORI, T
    KITAGAWA, T
    RADIOLOGY, 1971, 99 (03) : 683 - &