Core-Shell and Helical-Structured Cylindrical Triboelectric Nanogenerator for Wearable Energy Harvesting

被引:30
|
作者
Kim, Dogyun [1 ,2 ]
Park, Jiwon [1 ,2 ]
Kim, Youn Tae [1 ,2 ]
机构
[1] Chosun Univ, IT Fus Technol Res Ctr, 309 Pilmun Daero, Gwangju 61452, South Korea
[2] Chosun Univ, Dept IT Fus Technol, 309 Pilmun Daero, Gwangju 61452, South Korea
来源
ACS APPLIED ENERGY MATERIALS | 2019年 / 2卷 / 02期
关键词
core-shell; helical structure; internal friction; triple structure; wearable energy harvesting; triboelectric nanogenerator; BIOMECHANICAL ENERGY; FABRICS; POWER;
D O I
10.1021/acsaem.8b01931
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy-harvesting technologies that generate continuous power from human movement by wearable devices have attracted increasing attention and demand. Flexible fibers or cylindrical triboelectric nanogenerators with a 1-dimensional structure have the advantage of being mass-producible. In this Article, we propose a core shell and helical-structured cylindrical triboelectric nanogenerator (CCTENG) that can generate power by various deformations and human movements. Unlike conventional triboelectric nanogenerators that leverage limited motion, CCTENGs generate energy from various deformations, including compression and rubbing, and they have fewer environmental constraints. The fabricated CCTENGs generated a maximum 169 V and 18.9 mu A, and we verified the potential for a newly structured CCTENG that enables self-powered generation-sensing applications from the harvested energy.
引用
收藏
页码:1357 / +
页数:11
相关论文
共 50 条
  • [41] Swing-Structured Triboelectric-Electromagnetic Hybridized Nanogenerator for Breeze Wind Energy Harvesting
    Lu, Pinjing
    Pang, Hao
    Ren, Jie
    Feng, Yawei
    An, Jie
    Liang, Xi
    Jiang, Tao
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (11)
  • [42] Design of DC-Triboelectric Nanogenerator for Energy Harvesting
    Abdelrahim, Mohamed Omer Mahgoub
    Lee, Lini
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2022, 13 (06) : 1308 - 1316
  • [43] A Triboelectric Nanogenerator for Energy Harvesting from Transformers' Vibrations
    Simoes, Agnes Nascimento
    Carvalho, Danilo Jose
    Morita, Eugenio de Souza
    Moretti, Haroldo Luiz
    Vendrameto, Helen Velozo
    Fu, Li
    Torres, Floriano
    de Souza, Andre Nunes
    Bizzo, Waldir Antonio
    Mazon, Talita
    MACHINES, 2022, 10 (03)
  • [44] Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy
    Cheng, Jiahui
    Zhang, Xiaolong
    Jia, Tingwei
    Wu, Qian
    Dong, Yang
    Wang, Daoai
    NANO ENERGY, 2022, 102
  • [45] A generalized model for a triboelectric nanogenerator energy harvesting system
    Sun, Bobo
    Guo, Xin
    Zhang, Yuyang
    Wang, Zhong Lin
    Shao, Jiajia
    NANO ENERGY, 2024, 126
  • [46] Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator
    Yang, Jin
    Chen, Jun
    Yang, Ya
    Zhang, Hulin
    Yang, Weiqing
    Bai, Peng
    Su, Yuanjie
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2014, 4 (06)
  • [47] Nonlinear Dynamics of Wind Energy Harvesting Triboelectric Nanogenerator
    Mo, Shuai
    Zeng, Yanjun
    Wang, Zhen
    Zhang, Yingxin
    Zhou, Yuansheng
    Zhang, Jielu
    Zhang, Wei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2025, 13 (04)
  • [48] Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy
    Ting Quan
    Yingchun Wu
    Ya Yang
    Nano Research, 2015, 8 : 3272 - 3280
  • [49] Soft Tubular Triboelectric Nanogenerator for Biomechanical Energy Harvesting
    Liu, Guo Xu
    Li, Wen Jian
    Liu, Wen Bo
    Bu, Tian Zhao
    Guo, Tong
    Jiang, Dong Dong
    Zhao, Jun Qing
    Xi, Feng Ben
    Hu, Wei Guo
    Zhang, Chi
    ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (12):
  • [50] Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
    Yongtao Yu
    Yuelin Yu
    Hongyi Wu
    Tianshuo Gao
    Yi Zhang
    Jiajia Wu
    Jiawei Yan
    Jian Shi
    Hideaki Morikawa
    Chunhong Zhu
    Energy & Environmental Materials, 2024, 7 (05) : 380 - 390