Improved parallel prefix computation on optical multi-trees

被引:3
|
作者
Jana, PK [1 ]
机构
[1] Indian Sch Mines, Dept Comp Sci & Engn, Dhanbad 826004, Bihar, India
关键词
prefix computation; optoelectronic computers; optical multi-trees; time complexity;
D O I
10.1109/INDICO.2004.1497785
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A parallel algorithm for prefix computation was reported on a recently proposed interconnection network called optical multi-trees (OMULT) [6]. Using 2n(3) - n(2) processors, the algorithm was shown to run in O(log n)(A) electronic moves + 5 optical moves for n(2) data points. In this paper we present a new and improved parallel algorithm for prefix computation on the same network. Although the algorithm requires O(log n) electronic moves + 4 optical moves using the same number of processors, the number of data points involved in our algorithm is n(3) in contrast to n(2) as considered in [6].
引用
收藏
页码:414 / 418
页数:5
相关论文
共 50 条
  • [31] Matrix exponentials and parallel prefix computation in a quantum control problem
    Auckenthaler, T.
    Bader, M.
    Huckle, T.
    Spoerl, A.
    Waldherr, K.
    PARALLEL COMPUTING, 2010, 36 (5-6) : 359 - 369
  • [32] Parallel computation of phylogenetic consensus trees
    Aberer, Andre J.
    Pattengale, Nicholas D.
    Stamatakis, Alexandros
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1059 - 1067
  • [33] AN IMPROVED PARALLEL PREFIX ALGORITHM ON OTIS-MESH
    Jana, Prasanta K.
    Sinha, Bhabani P.
    PARALLEL PROCESSING LETTERS, 2006, 16 (04) : 429 - 440
  • [34] Much Ado about Two (Pearl) A Pearl on Parallel Prefix Computation
    Voigtlaender, Janis
    POPL'08: PROCEEDINGS OF THE 35TH ANNUAL ACM SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, 2008, : 29 - 35
  • [35] Parallel Computation for the All-Pairs Suffix-Prefix Problem
    Louza, Felipe A.
    Gog, Simon
    Zanotto, Leandro
    Araujo, Guido
    Telles, Guilherme P.
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2016, 2016, 9954 : 122 - 132
  • [36] Optimal Metastability-Containing Sorting via Parallel Prefix Computation
    Bund, Johannes
    Lenzen, Christoph
    Medina, Moti
    IEEE TRANSACTIONS ON COMPUTERS, 2020, 69 (02) : 198 - 211
  • [37] Effectiveness of GPU Realizations of Parallel Prefix-Sums Computation Algorithms
    Stokfiszewski, Kamil
    Puchala, Dariusz
    Yatsymirskyy, Mykhaylo
    2018 IEEE 13TH INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), VOL 1, 2018, : 436 - 439
  • [38] Much ado about two (pearl) -: A pearl on parallel prefix computation
    Voigtlaender, Janis
    ACM SIGPLAN NOTICES, 2008, 43 (01) : 29 - 35
  • [39] Efficient Implementations of Radix-4 Parallel-Prefix Trees
    Perri, Stefania
    Corsonello, Pasquale
    CENICS 2011: THE FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN CIRCUITS, ELECTRONICS AND MICRO-ELECTRONICS, 2011, : 1 - 5
  • [40] DEPTH-SIZE TRADE-OFFS FOR PARALLEL PREFIX COMPUTATION
    SNIR, M
    JOURNAL OF ALGORITHMS, 1986, 7 (02) : 185 - 201