On optimal quantum codes

被引:205
|
作者
Grassl, M
Beth, T
Rötteler, M
机构
[1] Univ Karlsruhe, Inst Algorithmen & Kognit Syst, D-76128 Karlsruhe, Germany
[2] Univ Waterloo, Fac Math, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
quantum error-correcting codes; quantum MDS codes;
D O I
10.1142/S0219749904000079
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present families of quantum error-correcting codes which are optimal in the sense that the minimum distance is maximal. These maximum distance separable (MDS) codes are defined over q-dimensional quantum systems, where q is an arbitrary prime power. It is shown that codes with parameters [n,n - 2d + 2,d](q) exist for all 3 <= n <= q and 1 <= d <= n/2 + 1. We also present quantum MDS codes with parameters [q(2), q(2) - 2d + 2,d](q) for 1 <= d <= q which additionally give rise to shortened codes [q(2) - s, q(2) - 2d + 2 - s,d](q) for some s.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 50 条
  • [21] Two Classes of New Optimal Asymmetric Quantum Codes
    Xiaojing Chen
    Shixin Zhu
    Xiaoshan Kai
    International Journal of Theoretical Physics, 2018, 57 : 1829 - 1838
  • [22] A Construction of Optimal Nonbinary Pure Quantum Stabilizer Codes
    Sujuan Huang
    Zhonghua Sun
    Shixin Zhu
    International Journal of Theoretical Physics, 61
  • [23] Optimal Interleavers for Classical and Quantum Tensor Product Codes
    Nadkarni, Priya J.
    Garani, Shayan Srinivasa
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (11) : 3478 - 3482
  • [24] Two Families of Optimal Quantum Locally Recoverable Codes
    Xie, Dengcheng
    Zhu, Shixin
    Sun, Zhonghua
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (04)
  • [25] Optimal Single-Shot Decoding of Quantum Codes
    Cumitini, Aldo
    Tinelli, Stefano
    Matuz, Balazs
    Lazaro, Francisco
    Barletta, Luca
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (06) : 1243 - 1247
  • [26] A Construction of Optimal Nonbinary Pure Quantum Stabilizer Codes
    Huang, Sujuan
    Sun, Zhonghua
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (04)
  • [27] Optimal and efficient decoding of concatenated quantum block codes
    Poulin, David
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [28] Some new constructions of optimal asymmetric quantum codes
    Guohui Wang
    Chunming Tang
    Weiming Wei
    Quantum Information Processing, 22
  • [29] Some new constructions of optimal asymmetric quantum codes
    Wang, Guohui
    Tang, Chunming
    Wei, Weiming
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [30] Discovery of optimal quantum codes via reinforcement learning
    Su, Vincent Paul
    Cao, Chunjun
    Hu, Hong-Ye
    Yanay, Yariv
    Tahan, Charles
    Swingle, Brian
    Physical Review Applied, 2025, 23 (03)