Group Symmetry in Interior-Point Methods for Semidefinite Program

被引:37
|
作者
Kanno, Yoshihiro [1 ]
Ohsaki, Makoto [1 ]
Murota, Kazuo [2 ,3 ]
Katoh, Naoki [1 ]
机构
[1] Kyoto Univ, Dept Architecture & Architectural Syst, Sakyo Ku, Kyoto 6068501, Japan
[2] Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
[3] Univ Tokyo, Dept Math Engn & Informat Phys, Bunkyo Ku, Tokyo 1138656, Japan
关键词
semidefinite program; primal-dual interior-point method; group representation theory; structural optimization;
D O I
10.1023/A:1015366416311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A class of group symmetric Semi-Definite Program (SDP) is introduced by using the framework of group representation theory. It is proved that the central path and several search directions of primal-dual interior-point methods are group symmetric. Preservation of group symmetry along the search direction theoretically guarantees that the numerically obtained optimal solution is group symmetric. As an illustrative example, we show that the optimization problem of a symmetric truss under frequency constraints can be formulated as a group symmetric SDP. Numerical experiments using an interior-point algorithm demonstrate convergence to strictly group symmetric solutions.
引用
收藏
页码:293 / 320
页数:28
相关论文
共 50 条
  • [41] An O (√nL) wide neighborhood interior-point algorithm for semidefinite optimization
    Pirhaji, M.
    Mansouri, H.
    Zangiabadi, M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01): : 145 - 157
  • [42] Interior-point algorithm for semidefinite programming based on a logarithmic kernel function
    Benterki, Djamel
    Yassine, Adnan
    Zerari, Amina
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 3 - 15
  • [43] Improved Complexity Analysis of Full Nesterov-Todd Step Interior-Point Methods for Semidefinite Optimization
    Wang, G. Q.
    Bai, Y. Q.
    Gao, X. Y.
    Wang, D. Z.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (01) : 242 - 262
  • [44] ON THE EXTENSION OF AN ARC-SEARCH INTERIOR-POINT ALGORITHM FOR SEMIDEFINITE OPTIMIZATION
    Kheirfam, Behrouz
    Moslemi, Morteza
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2018, 8 (02): : 261 - 275
  • [45] A Wide Neighborhood Interior-Point Algorithm for Convex Quadratic Semidefinite Optimization
    Mohammad Pirhaji
    Maryam Zangiabadi
    Hossien Mansouri
    Ali Nakhaei
    Ali Shojaeifard
    Journal of the Operations Research Society of China, 2020, 8 : 145 - 164
  • [46] A primal-dual regularized interior-point method for semidefinite programming
    Dehghani, A.
    Goffin, J. -L.
    Orban, D.
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01): : 193 - 219
  • [47] Loraine - an interior-point solver for low-rank semidefinite programming
    Habibi, Soodeh
    Kocvara, Michal
    Stingl, Michael
    OPTIMIZATION METHODS & SOFTWARE, 2024, 39 (06): : 1185 - 1215
  • [48] SDPHA: A MATLAB implementation of homogeneous interior-point algorithms for semidefinite programming
    Brixius, N
    Potra, FA
    Sheng, RQ
    OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4): : 583 - 596
  • [49] A Mehrotra predictor-corrector interior-point algorithm for semidefinite optimization
    Pirhaji, Mohammad
    Zangiabadi, Maryam
    Mansouri, Hossein
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (01) : 168 - 185
  • [50] A new primal-dual interior-point algorithm for semidefinite optimization
    Lee, Yong-Hoon
    Jin, Jin-Hee
    Cho, Gyeong-Mi
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,