On the control of nonholonomic systems in power form.

被引:0
|
作者
Ibrir, S [1 ]
Brahim-Belhaouari, S [1 ]
机构
[1] Ecole Super Elect, Signaux & Syst Lab, SUPELEC, CNRS, F-91192 Gif Sur Yvette, France
关键词
invariant manifolds; stabilization; numerical methods;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this gaper, we develop discontinuous controllers for stabilizing n-dimensional nonholonomic mechanical systems given in power form. We show that the stabilization of the whole system turns out to be a simultaneous stabilization of (n - 3) driftless subsystems. The central strategy is based on the technique of invariant manifolds. Moreover, it is shown that we could improve the rate of convergence of the state vector by the use of dynamic controllers. A numerical procedure is proposed to filter the noisy measurement without affecting the dynamic of the controller.
引用
收藏
页码:1438 / 1443
页数:6
相关论文
共 50 条
  • [31] Obstacle to the reduction of nonholonomic systems to the Hamiltonian form
    A. V. Borisov
    I. S. Mamaev
    Doklady Physics, 2002, 47 : 892 - 894
  • [32] Set Stabilization of Nonholonomic Chained Form Systems
    Li, Shihua
    Yang, Jie
    Lin, Xiangze
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3800 - +
  • [33] Discontinuous control of nonholonomic systems
    Astolfi, A
    SYSTEMS & CONTROL LETTERS, 1996, 27 (01) : 37 - 45
  • [34] Consensus of multiple nonholonomic chained form systems
    Cao, Ke-Cai
    Jiang, Bin
    Yue, Dong
    SYSTEMS & CONTROL LETTERS, 2014, 72 : 61 - 70
  • [35] Discontinuous control of nonholonomic systems
    Automatic Control Laboratory, ETH-Zuerich, 8092 Zuerich, Switzerland
    Syst Control Lett, 1 (37-45):
  • [36] Control of nonholonomic Hamiltonian systems
    Fujimoto, K
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 2202 - 2207
  • [37] The stomach form.
    Kratzeisen, E
    BEITRAGE ZUR PATHOLOGISCHEN ANATOMIE UND ZUR ALLGEMEINEN PATHOLOGIE, 1923, 71 : 361 - 375
  • [38] Obstacle to the reduction of nonholonomic systems to the Hamiltonian form
    Borisov, AV
    Mamaev, IS
    DOKLADY PHYSICS, 2002, 47 (12) : 892 - 894
  • [39] Linearization of nonholonomic control systems
    Makarov, IA
    Fradkov, AL
    AUTOMATION AND REMOTE CONTROL, 1996, 57 (05) : 615 - 625
  • [40] Affinity of Form.
    Clement, Russell T.
    LIBRARY JOURNAL, 2009, 134 (14) : 112 - 112