Electrochemical Behaviour of Carbamazepine in Acetonitrile and Dimethylformamide Using Glassy Carbon Electrodes and Microelectrodes

被引:25
|
作者
Atkins, S. [1 ]
Sevilla, J. M. [2 ]
Blazquez, M. [2 ]
Pineda, T. [2 ]
Gonzalez-Rodriguez, J. [1 ]
机构
[1] Lincoln Univ, Sch Nat & Appl Sci, Lincoln LN6 7TS, England
[2] Univ Cordoba, Dept Quim Fis & Termodinam Aplicada, E-14071 Cordoba, Spain
关键词
Carbamazepine; Glassy carbon electrode; Microelectrodes; Voltammetry; LIQUID-CHROMATOGRAPHY; ELECTROREDUCTION; POLAROGRAPHY; METHANOL; SOLVENT; DRUGS;
D O I
10.1002/elan.201000341
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrochemical reduction of carbamazepine in acetonitrile (ACN) and dimethylformamide (DMF) using a glassy carbon electrode and microelectrodes has been studied. The reduction process is consistent with an electrochemical-chemical mechanism (EC) involving a two electron transfer followed by a first order reaction, as shown by the cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Half-wave potential, number of electron transferred, diffusion coefficient and rate constant of the associated chemical reaction are reported. Limits of detection (LOD) for DPV are 0.92 and 0.76 mg mL(-1) (3.89 x 10(-6) mol L-1 and 3.21 x 10(-6) mol L-1) in ACN and DMF, respectively. Precision (% RSD) and recovery (%) values when pharmaceutical compounds (200mg carbamazepine tablets) and spiked plasma samples were tested ranged from 1.09 to 9.04% and % recoveries ranged from 96 to 104.1%.
引用
收藏
页码:2961 / 2966
页数:6
相关论文
共 50 条