Engineering of Droplet Charges in Microfluidic Chips

被引:3
|
作者
He, Rongxiang [1 ,2 ]
Ruan, Meilin [1 ]
Qi, Yuyang [1 ]
Liu, Hongni [1 ]
Zhang, Zhengtao [1 ]
Chen, Chaohui [1 ]
Chao, Yiping [1 ]
Liu, Yumin [1 ,2 ]
Chen, Yong [1 ,3 ]
机构
[1] Jianghan Univ, Minist Educ, Key Lab Optoelect Chem Mat & Devices, Inst Interdisciplinary Res, Wuhan 430056, Peoples R China
[2] Jianghan Univ, Hubei Key Lab Environm & Hlth Effects Persistent, Wuhan 430056, Peoples R China
[3] Ecole Normale Super, Dept Chim, 24 Rue Lhomond, F-75231 Paris 05, France
关键词
droplets; electric double layers; microfluidics; surface modification; GENERATOR; FLOW;
D O I
10.1002/adem.201901521
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Droplet-based technologies, which utilize the surface charge characterization of droplets, are used in fluorescence-activated cell sorting and energy harvesting. Herein, the influence of droplet charges on microchips is investigated via surface engineering. An electrical field is applied to deflect the droplets in a microchannel, thereby enabling a qualitative analysis of the droplet charge. In a glass polydimethylsiloxane (PDMS)-boned microchip, the droplet charge decreases when the microchannel is changed from a single-sided to a three-sided rectangular microstructure. When the ionic concentration of the droplet increases from 1 mu m to 10 mm, droplet charges decrease by approximate to 78%. Meanwhile, a Au film is patterned in the microchannel, and 11-aminoundecanethiol hydrochloride (AUT) and 12-mercaptododecanoic acid (MDA) are modified to modulate the Au surface characterization. Compared with the glass-PDMS-bonded microchannel, the Au film can suppress the streaming potential to decrease the droplet charges. After modification with MDA and AUT, the droplet charges increase. Therefore, the microchannel structures, ionic concentration, and substrate surface properties can be utilized to modulate the droplet charges, which can be widely used in droplet-based energy harvesting and biological and chemical sample sorting.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Polymers for microfluidic chips
    Song, S
    Lee, KY
    MACROMOLECULAR RESEARCH, 2006, 14 (02) : 121 - 128
  • [22] Microfluidic Chips for Immunoassays
    Han, Kwi Nam
    Li, Cheng Ai
    Seong, Gi Hun
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 6, 2013, 6 : 119 - 141
  • [23] Polymers for Microfluidic Chips
    Simon Song
    Kuen Yong Lee
    Macromolecular Research, 2006, 14 : 121 - 128
  • [24] Biosensors in Microfluidic Chips
    Noh, Jongmin
    Kim, Hee Chan
    Chung, Taek Dong
    MICROFLUIDICS: TECHNOLOGIES AND APPLICATIONS, 2011, 304 : 117 - 152
  • [25] Optimizing the Production of Hydrogel Microspheres Using Microfluidic Chips: The Influence of Surface Treatment on Droplet Formation Mechanism
    Zhang, Limin
    Li, Weitao
    Wei, Luxing
    Zhao, Yiming
    Qiu, Yinghua
    Liu, Hanlian
    Huang, Chuanzhen
    Huang, Jun
    LANGMUIR, 2023, 39 (39) : 13932 - 13945
  • [26] Critical charges for droplet collisions
    Dubey, A.
    Bewley, G. P.
    Gustavsson, K.
    Mehlig, B.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (07):
  • [27] Droplet microfluidic SANS
    Adamo, Marco
    Poulos, Andreas S.
    Lopez, Carlos G.
    Martel, Anne
    Porcar, Lionel
    Cabral, Joa O. T.
    SOFT MATTER, 2018, 14 (10) : 1759 - 1770
  • [28] Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering
    Osaki, Tatsuya
    Sivathanu, Vivek
    Kamm, Roger D.
    CURRENT OPINION IN BIOTECHNOLOGY, 2018, 52 : 116 - 123
  • [29] Evolution in Microfluidic Droplet
    Levin, Itay
    Aharoni, Amir
    CHEMISTRY & BIOLOGY, 2012, 19 (08): : 929 - 931
  • [30] Microfluidic organs-on-chips
    Bhatia, Sangeeta N.
    Ingber, Donald E.
    NATURE BIOTECHNOLOGY, 2014, 32 (08) : 760 - 772