Automated mammogram breast cancer detection using the optimized combination of convolutional and recurrent neural network

被引:60
|
作者
Patil, Rajeshwari S. [1 ,2 ]
Biradar, Nagashettappa [3 ]
机构
[1] S VP Dr PG Halakatti Coll Engn & Tech, Dept Elect & Commun, BLDEA, Vijayapur 586103, Karnataka, India
[2] Visvesvaraya Technol Univ, Belagavi 590018, India
[3] Bheemanna Khandre Inst Technol, Dept Elect & Commun, Bhalki, Karnataka, India
关键词
Mammography; Breast cancer diagnosis; Optimized region growing; Deep hybrid learning; Firefly updated chick-based chicken swarm optimization; LEVEL SET METHOD; DIAGNOSIS SYSTEM; ALGORITHM; CLASSIFICATION; FRAMEWORK; WAVELET;
D O I
10.1007/s12065-020-00403-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this study is to frame mammogram breast detection model using the optimized hybrid classifier. Image pre-processing, tumor segmentation, feature extraction, and detection are the functional phases of the proposed breast cancer detection. A median filter eliminates the noise of the input mammogram. Further, the optimized region growing segmentation is carried out for segmenting the tumor from the image and the optimized region growing depends on a hybrid meta-heuristic algorithm termed as firefly updated chicken based CSO (FC-CSO). To the next of tumor segmentation, feature extraction is done, which intends to extract the features like grey level co-occurrence matrix (GLCM), and gray level run-length matrix (GRLM). The two deep learning architectures termed as convolutional neural network (CNN), and recurrent neural network (RNN). Moreover, both GLCM and GLRM are considered as input to RNN, and the tumor segmented binary image is considered as input to CNN. The result of this study shows that the AND operation of two classifier output will tend to yield the overall diagnostic accuracy, which outperforms the conventional models.
引用
收藏
页码:1459 / 1474
页数:16
相关论文
共 50 条
  • [21] Mammogram-Based Cancer Detection Using Deep Convolutional Neural Networks
    Ahmed, Al Hussein
    Salem, Mohammed A-M.
    PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 694 - 699
  • [22] Fully automated detection of breast cancer in screening MRI using convolutional neural networks
    Dalmis, Mehmet Ufuk
    Vreemann, Suzan
    Kooi, Thijs
    Mann, Ritse M.
    Karssemeijer, Nico
    Gubern-Merida, Albert
    JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)
  • [23] Early Detection of Breast Cancer using Pretrained AlexNet Convolutional Neural Network
    Guanulema, Brenda
    Osorio-Ordonez, Daniela
    Vaca-Farinango, Helen
    Mieles-Salazar, Ariana
    Villalba-Meneses, Fernando
    Cevallos-Bermeo, Gabriela
    Cadena-Morejon, Carolina
    Almeida-Galarraga, Diego
    Tirado-Espin, Andres
    2023 FOURTH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND SOFTWARE TECHNOLOGIES, ICI2ST 2023, 2023, : 81 - 88
  • [24] Classification of breast cancer mammogram images using convolution neural network
    Albalawi, Umar
    Manimurugan, S.
    Varatharajan, R.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (13):
  • [25] Automated Detection of Lunar Rockfalls Using a Convolutional Neural Network
    Bickel, Valentin Tertius
    Lanaras, Charis
    Manconi, Andrea
    Loew, Simon
    Mall, Urs
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3501 - 3511
  • [26] Automated Detection of Retinal Fluid Using a Convolutional Neural Network
    Hormel, Tristan
    Wang, Jie
    You, Qisheng
    Huang, David
    Hwang, Thomas
    Jia, Yali
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [27] BREAST CANCER CLASSIFICATION IN AUTOMATED BREAST ULTRASOUND USING MULTIVIEW CONVOLUTIONAL NEURAL NETWORK WITH TRANSFER LEARNING
    Wang, Yi
    Choi, Eun Jung
    Choi, Younhee
    Zhang, Hao
    Jin, Gong Yong
    Ko, Seok-Bum
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (05): : 1119 - 1132
  • [28] Automated Pain Severity Detection Using Convolutional Neural Network
    Semwal, Ashish
    Londhe, Narendra D.
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 66 - 70
  • [29] Enhancing Breast Cancer Detection with Recurrent Neural Network
    Zheng, Yufeng
    Yang, Clifford
    Wang, Hongyu
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2020, 2020, 11399
  • [30] Micro Calcification Detection in Mammogram Images Using Contiguous Convolutional Neural Network Algorithm
    Gomathi P.
    Muniraj C.
    Periasamy P.S.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1887 - 1899