Incremental Composition in Distributional Semantics

被引:1
|
作者
Purver, Matthew [1 ,2 ]
Sadrzadeh, Mehrnoosh [3 ]
Kempson, Ruth [4 ]
Wijnholds, Gijs [1 ]
Hough, Julian [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
[2] Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
[3] UCL, Dept Comp Sci, London, England
[4] Kings Coll London, Dept Philosophy, London, England
基金
英国工程与自然科学研究理事会;
关键词
Incrementality; Semantics; Vector space semantics; Incremental disambiguation;
D O I
10.1007/s10849-021-09337-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the incremental nature of Dynamic Syntax (DS), the semantic grounding of it remains that of predicate logic, itself grounded in set theory, so is poorly suited to expressing the rampantly context-relative nature of word meaning, and related phenomena such as incremental judgements of similarity needed for the modelling of disambiguation. Here, we show how DS can be assigned a compositional distributional semantics which enables such judgements and makes it possible to incrementally disambiguate language constructs using vector space semantics. Building on a proposal in our previous work, we implement and evaluate our model on real data, showing that it outperforms a commonly used additive baseline. In conclusion, we argue that these results set the ground for an account of the non-determinism of lexical content, in which the nature of word meaning is its dependence on surrounding context for its construal.
引用
收藏
页码:379 / 406
页数:28
相关论文
共 50 条
  • [41] Linse: A Distributional Semantics Entity Search Engine
    Sales, Juliano Efson
    Freitas, Andre
    Handschuh, Siegfried
    Davis, Brian
    SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2015, : 1045 - 1046
  • [42] Distributional Semantics of Line Charts for Trend Classification
    Onweller, Connor
    O'Brien, Andrew
    Kim, Edward
    McCoy, Kathleen F.
    ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT II, 2022, 13599 : 259 - 269
  • [43] Distributional Semantics: Meaning Through Culture and Interaction
    Kallens, Pablo Contreras
    Christiansen, Morten H.
    TOPICS IN COGNITIVE SCIENCE, 2024,
  • [44] Probabilistic Distributional Semantics with Latent Variable Models
    Seaghdha, Diarmuid O.
    Korhonen, Anna
    COMPUTATIONAL LINGUISTICS, 2014, 40 (03) : 587 - 631
  • [45] Empirical distributional semantics: Methods and biomedical applications
    Cohen, Trevor
    Widdows, Dominic
    JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (02) : 390 - 405
  • [46] Cross Modal Inference in Distributional Models of Semantics
    Kievit-Kylar, Brent
    Jones, Michael
    CANADIAN JOURNAL OF EXPERIMENTAL PSYCHOLOGY-REVUE CANADIENNE DE PSYCHOLOGIE EXPERIMENTALE, 2012, 66 (04): : 320 - 320
  • [47] Unsupervised image translation with distributional semantics awareness
    Peng, Zhexi
    Wang, He
    Weng, Yanlin
    Yang, Yin
    Shao, Tianjia
    COMPUTATIONAL VISUAL MEDIA, 2023, 9 (03) : 619 - 631
  • [48] Distributional Semantics Today Introduction to the special issue
    Fabre, Cecile
    Lenci, Alessandro
    TRAITEMENT AUTOMATIQUE DES LANGUES, 2015, 56 (02): : 7 - 20
  • [49] DISTRIBUTIONAL SEMANTICS FOR UNDERSTANDING SPOKEN MEAL DESCRIPTIONS
    Korpusik, Mandy
    Huang, Calvin
    Price, Michael
    Glass, James
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6070 - 6074
  • [50] Learning Functional Distributional Semantics with Visual Data
    Liu, Yinhong
    Emerson, Guy
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 3976 - 3988