SCHUBERT CALCULUS AND TORSION EXPLOSION

被引:54
|
作者
Williamson, Geordie [1 ]
Kontorovich, Alex [2 ]
McNamara, Peter J. [3 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Rutgers State Univ, New Brunswick, NJ USA
[3] Univ Queensland, Brisbane, Qld, Australia
基金
美国国家科学基金会;
关键词
KAZHDAN-LUSZTIG CONJECTURE; AFFINE LIE-ALGEBRAS; INTERSECTION COHOMOLOGY; REPRESENTATION-THEORY; COMBINATORICS; MODULES; SHEAVES;
D O I
10.1090/jams/868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author observes that certain numbers occurring in Schubert calculus for SLn also occur as entries in intersection forms controlling decompositions of Soergel bimodules in higher rank. These numbers grow exponentially. This observation gives many counter-examples to the expected bounds in Lusztig’s conjecture on the characters of simple rational modules for SLn over fields of positive characteristic. The examples also give counter-examples to the James conjecture on decomposition numbers for symmetric groups. © 2016 American Mathematical Society.
引用
收藏
页码:1023 / 1046
页数:24
相关论文
共 50 条
  • [21] Back stable Schubert calculus
    Lam, Thomas
    Lee, Seung Jin
    Shimozono, Mark
    COMPOSITIO MATHEMATICA, 2021, 157 (05) : 883 - 962
  • [22] EIGENVALUE INEQUALITIES AND SCHUBERT CALCULUS
    HELMKE, U
    ROSENTHAL, J
    MATHEMATISCHE NACHRICHTEN, 1995, 171 : 207 - 225
  • [23] Schubert calculus and singularity theory
    Gorbounov, Vassily
    Petrov, Victor
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) : 352 - 360
  • [24] FRONTIERS OF REALITY IN SCHUBERT CALCULUS
    Sottile, Frank
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (01) : 31 - 71
  • [25] Schubert calculus for algebraic cobordism
    Hornbostel, Jens
    Kiritchenko, Valentina
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 656 : 59 - 85
  • [26] DETERMINANTAL FORMULA OF SCHUBERT CALCULUS
    KEMPF, G
    LAKSOV, D
    ACTA MATHEMATICA, 1974, 132 (3-4) : 153 - 162
  • [27] Schubert Calculus on a Grassmann Algebra
    Gatto, Letterio
    Santiago, Taise
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (02): : 200 - 212
  • [28] SCHUBERT CALCULUS IN COMPLEX COBORDISM
    BRESSLER, P
    EVENS, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 331 (02) : 799 - 813
  • [29] Positivity in equivariant Schubert calculus
    Graham, W
    DUKE MATHEMATICAL JOURNAL, 2001, 109 (03) : 599 - 614
  • [30] A formalism for equivariant Schubert calculus
    Laksov, Dan
    ALGEBRA & NUMBER THEORY, 2009, 3 (06) : 711 - 727