The logarithmic cotangent complex

被引:45
|
作者
Olsson, MC [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Deformation Theory; Cotangent Complex; Transitivity Triangle;
D O I
10.1007/s00208-005-0707-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the cotangent complex of a morphism of fine log schemes, prove that it is functorial, and construct under certain restrictions a transitivity triangle. We also discuss its relationship with deformation theory.
引用
收藏
页码:859 / 931
页数:73
相关论文
共 50 条
  • [41] C∞-logarithmic transformations and generalized complex structures
    Goto, Ryushi
    Hayano, Kenta
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (02) : 341 - 357
  • [42] CRITICAL-BEHAVIOR OF COMPLEX LOGARITHMIC MAP
    TANAKA, M
    KAWABE, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (11) : 3767 - 3770
  • [43] A C-INFINITY LOGARITHMIC DOLBEAULT COMPLEX
    BURGOS, JI
    COMPOSITIO MATHEMATICA, 1994, 92 (01) : 61 - 86
  • [44] NOTES ON THE GEOMETRY OF COTANGENT BUNDLE AND UNIT COTANGENT SPHERE BUNDLE
    Kacimi, Bouazza
    Kadi, Fatima Zohra
    Ozkan, Mustafa
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 845 - 859
  • [45] EGO-MOTION COMPLEX LOGARITHMIC MAPPING
    JAIN, R
    OBRIEN, N
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1985, 521 : 16 - 23
  • [46] ASYMPTOTIC LOGARITHMIC BEHAVIOR AND COMPLEX DIMENSIONALITY PARAMETER
    LUKIERSKI, J
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1974, A 20 (04): : 669 - 677
  • [47] GEOMETRY OF LOGARITHMIC FORMS AND DEFORMATIONS OF COMPLEX STRUCTURES
    Liu, Kefeng
    Rao, Sheng
    Wan, Xueyuan
    JOURNAL OF ALGEBRAIC GEOMETRY, 2019, 28 (04) : 773 - 815
  • [48] Towards a Quaternion Complex Logarithmic Number System
    Arnold, Mark G.
    Cowles, John
    Paliouras, Vassilis
    Kouretas, Ioannis
    2011 20TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH-20), 2011, : 33 - 42
  • [49] A logarithmic version of the complex generalized Smith Chart
    Vidal-García, Pablo (pvidal@tsc.uniovi.es), 1600, Electromagnetics Academy (68):
  • [50] Swan conductors and torsion in the logarithmic de Rham complex
    Unver, Sinan
    TURKISH JOURNAL OF MATHEMATICS, 2010, 34 (04) : 451 - 464