New inequalities of Wilker's type for circular functions

被引:11
|
作者
Zhu, Ling [1 ]
机构
[1] Zhejiang Gongshang Univ, Dept Math, Hangzhou 310018, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 05期
关键词
Wilker type inequality; circular function; tangent function; sine function; Bernoulli number;
D O I
10.3934/math.2020311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish three new Wilker type inequalities involving tangent and sine functions by use of a double inequality for the ratio of two consecutive non-zero Bernoulli numbers.
引用
收藏
页码:4874 / 4888
页数:15
相关论文
共 50 条
  • [21] Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions
    Li-Guo Huang
    Li Yin
    Yong-Li Wang
    Xiu-Li Lin
    Journal of Inequalities and Applications, 2018
  • [22] Wilker and Huygens type inequalities for mixed trigonometric-hyperbolic functions
    Bagul, Yogesh J.
    Bhayo, Barkat A.
    Dhaigude, Ramkrishna M.
    Raut, Vinay M.
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (02) : 207 - 220
  • [23] SHARP WILKER AND HUYGENS TYPE INEQUALITIES FOR TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS
    Zhang, Bo
    Chen, Chao-Ping
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 673 - 684
  • [24] Wilker- and Huygens-type inequalities for Jacobian elliptic and theta functions
    Neuman, Edward
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (03) : 240 - 248
  • [25] Sharpness of Wilker and Huygens type inequalities
    Chen, Chao-Ping
    Cheung, Wing-Sum
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [26] Sharpness of Wilker and Huygens type inequalities
    Chao-Ping Chen
    Wing-Sum Cheung
    Journal of Inequalities and Applications, 2012
  • [27] THE SHARP INEQUALITIES RELATED TO WILKER TYPE
    Yang, Zhen-Hang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03): : 1015 - 1026
  • [28] THE WILKER AND HUYGENS-TYPE INEQUALITIES
    Chen, Chao-Ping
    Paris, Richard B.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 685 - 705
  • [29] Wilker and Huygens- type inequalities for the generalized trigonometric and for the generalized hyperbolic functions
    Neuman, Edward
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 230 : 211 - 217
  • [30] INEQUALITY CHAINS FOR WILKER, HUYGENS AND LAZAREVIC TYPE INEQUALITIES
    Chen, Chao-Ping
    Sandor, Jozsef
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01): : 55 - 67