Multiscale texture segmentation using wavelet-domain hidden Markov models

被引:0
|
作者
Choi, HK [1 ]
Baraniuk, R [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wavelet-domain Hidden Markov Tree (HMT) models are powerful tools for modeling the statistical properties of wavelet transforms. By characterizing the joint statistics of the wavelet coefficients, HMTs efficiently capture the characteristics of a large class of real-world signals and images. In this paper, we apply this multiscale statistical description to the texture segmentation problem. Using the inherent tree structure of the HMT, we classify textures at various scales and then fuse these decisions into a reliable pixel-by-pixel segmentation.
引用
收藏
页码:1692 / 1697
页数:6
相关论文
共 50 条
  • [41] Hierarchical Markov models for wavelet-domain statistics
    Azimifar, Z
    Fieguth, P
    Jernigan, E
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 258 - 261
  • [42] Diagnosis of design and defects in radiography of ceramic antique objects using the wavelet-domain hidden Markov models
    Negahdarzadeh, Eissa
    Yahaghi, Effat
    Rokrok, Behrouz
    Movafeghi, Amir
    Khani, Abolfazl Keshavarz
    JOURNAL OF CULTURAL HERITAGE, 2019, 35 : 56 - 63
  • [43] Research on insulator infrared image denoising using significant wavelet-domain hidden Markov tree models
    Ge, Xinyuan
    Sun, Zhongwei
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 3, PROCEEDINGS, 2008, : 398 - 402
  • [44] Wavelet-domain compressive signal reconstruction using a Hidden Markov Tree model
    Duarte, Marco F.
    Wakin, Michael B.
    Baraniuk, Richard G.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 5137 - +
  • [45] Wavelet-domain image denoising using contextual hidden Markov tree model
    Ma, Yide
    Tian, Yong
    Zhang, Jiuwen
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 2617 - 2621
  • [46] Wavelet-domain aerial photo denoising using universal hidden Markov tree
    Wang, W
    Kang, XZ
    Rui, GS
    WAVELET ANALYSIS AND ITS APPLICATIONS, AND ACTIVE MEDIA TECHNOLOGY, VOLS 1 AND 2, 2004, : 338 - 343
  • [47] CR image filter methods research based on wavelet-domain hidden Markov models
    Wang, JL
    Wang, YP
    Li, DY
    Li, SW
    Kui, HL
    ICO20: OPTICAL INFORMATION PROCESSING, PTS 1 AND 2, 2006, 6027
  • [48] Hidden Markov Bayesian texture segmentation using complex wavelet transform
    Sun, J
    Gu, D
    Zhang, S
    Chen, Y
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2004, 151 (03): : 215 - 223
  • [49] Bayesian texture segmentation based on wavelet domain hidden markov tree and the SMAP rule
    孙俊喜
    张素
    赵永明
    陈亚珠
    Journal of Harbin Institute of Technology, 2005, (01) : 86 - 90
  • [50] Image segmentation using wavelet-domain classification
    Choi, H
    Baraniuk, R
    MATHEMATICAL MODELING, BAYESIAN ESTIMATION, AND INVERSE PROBLEMS, 1999, 3816 : 306 - 320