Evaluation of catalyst deactivation during catalytic steam reforming of biomass-derived syngas

被引:72
|
作者
Bain, RL [1 ]
Dayton, DC [1 ]
Carpenter, DL [1 ]
Czernik, SR [1 ]
Feik, CJ [1 ]
French, RJ [1 ]
Magrini-Bair, KA [1 ]
Phillips, SD [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
D O I
10.1021/ie050098w
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Mitigation of tars produced during biomass gasification continues to be a technical barrier to developing systems. This effort combined the measurement of tar-reforming catalyst deactivation kinetics and the production of syngas in a pilot-scale biomass gasification system at a single steady-state condition with mixed woods, producing a gas with an H-2-to-CO ratio of 2 and 13% methane. A slipstream from this process was introduced into a bench-scale 5.25 cm diameter fluidized-bed catalyst reactor charged with an alkali-promoted Ni-based/Al2O3 catalyst. Catalyst conversion tests were performed at a constant space time and five temperatures from 775 to 875 degrees C. The initial catalyst-reforming activity for all measured components (benzene, toluene, naphthalene, and total tars) except light hydrocarbons was 100%. The residual steady-state conversion of tar ranged from 96.6% at 875 degrees C to 70.5% at 775 degrees C. Residual steady-state conversions at 875 'C for benzene and methane were 81% and 32%, respectively. Catalytic deactivation models with residual activity were developed and evaluated based on experimentally measured changes in conversion efficiencies as a function of time on stream for the catalytic reforming of tars, benzene, methane, and ethane. Both first- and second-order models were evaluated for the reforming reaction and for catalyst deactivation. Comparison of experimental and modeling results showed that the reforming reactions were adequately modeled by either first-order or second-order global kinetic expressions. However, second-order kinetics resulted in negative activation energies for deactivation. Activation energies were determined for first-order reforming reactions and catalyst deactivation. For reforming, the representative activation energies were 32 kJ/g(.)mol for ethane, 19 kJ/g(.)mol for tars, 45 kJ/g(.)mol for tars plus benzene, and 8-9 kJ/g(.)mol for benzene and toluene. For catalyst deactivation, representative activation energies were 146 kJ/g(.)mol for ethane, 121 kJ/g(.)mol for tars plus benzene, 74 kJ/g(.)mol for benzene, and 19 kJ/g(.)mol for total tars. Methane was also modeled by a second-order reaction, with an activation energy of 18.6 kJ/g(.)mol and a catalyst deactivation energy of 5.8 kJ/g(.)mol.
引用
收藏
页码:7945 / 7956
页数:12
相关论文
共 50 条
  • [21] Microchannel catalytic processes for converting biomass-derived syngas to transportation fuels
    Cao, CS
    Wang, Y
    Jones, SB
    Hu, JL
    Li, XS
    Elliott, DC
    Stevens, DJ
    MICROREACTOR TECHNOLOGY AND PROCESS INTENSIFICATION, 2005, 914 : 273 - 284
  • [22] Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels
    Dagle, Vanessa Lebarbier
    Smith, Colin
    Flake, Matthew
    Albrecht, Karl
    Michel, Gray
    Ramasamy, Karthikeyan
    Dagle, Robert
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [23] Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water
    Cortright, RD
    Davda, RR
    Dumesic, JA
    NATURE, 2002, 418 (6901) : 964 - 967
  • [24] Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water
    R. D. Cortright
    R. R. Davda
    J. A. Dumesic
    Nature, 2002, 418 : 964 - 967
  • [25] Deactivation of Ni spinel derived catalyst during the oxidative steam reforming of raw bio-oil
    Arandia, Aitor
    Remiro, Aingeru
    Valle, Beatriz
    Bilbao, Javier
    Gayubo, Ana G.
    FUEL, 2020, 276
  • [26] Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles
    Arregi, Aitor
    Lopez, Gartzen
    Amutio, Maider
    Barbarias, Itsaso
    Santamaria, Laura
    Bilbao, Javier
    Olazar, Martin
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 68 : 69 - 78
  • [27] THE EFFECT OF ZEOLITE ZSM-5 CATALYST DEACTIVATION DURING THE UPGRADING OF BIOMASS-DERIVED PYROLYSIS VAPORS
    HORNE, PA
    WILLIAMS, PT
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1995, 34 (01) : 65 - 85
  • [28] Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications
    Fatsikostas, AN
    Kondarides, DI
    Verykios, XE
    CHEMICAL COMMUNICATIONS, 2001, (09) : 851 - 852
  • [29] High production of syngas from catalytic steam reforming of biomass glycerol in the presence of methane
    Huang, Can
    Xu, Chenghua
    Wang, Bin
    Hu, Xiaodong
    Li, Junjie
    Liu, Jiangying
    Liu, Jie
    Li, Chenxi
    BIOMASS & BIOENERGY, 2018, 119 : 173 - 178
  • [30] Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas
    Akubo, Kaltume
    Nahil, Mohamad Anas
    Williams, Paul T.
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (06) : 1987 - 1996