On the Rationality of the Moduli of Higher Spin Curves in Low Genus

被引:1
|
作者
Pernigotti, Letizia [1 ]
Verra, Alessandro [2 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, Trento, Italy
[2] Univ Rome Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
SPACE;
D O I
10.1093/imrn/rnv264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The global geometry of the moduli spaces of higher spin curves and their birational classification is largely unknown for g >= 2 and r > 2. Using quite related geometric constructions, we almost complete the picture of the known results in genus g <= 4 showing the rationality of the moduli spaces of even and odd 4-spin curves of genus 3, of odd spin curves of genus 4, and of 3-spin curves of genus 4.
引用
收藏
页码:3856 / 3879
页数:24
相关论文
共 50 条
  • [31] On the Moduli Space of Pointed Algebraic Curves of Low Genus III - Positive Characteristic -
    Nakano, Tetsuo
    TOKYO JOURNAL OF MATHEMATICS, 2016, 39 (02) : 565 - 582
  • [32] The moduli space of quasistable spin curves
    Abreu, Alex
    Pacini, Marco
    Taboada, Danny
    COLLECTANEA MATHEMATICA, 2024, 75 (01) : 27 - 80
  • [33] Tropicalizing the moduli space of spin curves
    Lucia Caporaso
    Margarida Melo
    Marco Pacini
    Selecta Mathematica, 2020, 26
  • [34] Tau Function and Moduli of Spin Curves
    Basok, Mikhail
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10095 - 10117
  • [35] Tropicalizing the moduli space of spin curves
    Caporaso, Lucia
    Melo, Margarida
    Pacini, Marco
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (01):
  • [36] ON THE GEOMETRY OF THE MODULI SPACE OF SPIN CURVES
    Ludwig, Katharina
    JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (01) : 133 - 171
  • [37] The moduli space of quasistable spin curves
    Alex Abreu
    Marco Pacini
    Danny Taboada
    Collectanea Mathematica, 2024, 75 : 27 - 80
  • [38] MODULI OF CURVES OF GENUS ONE WITH TWISTED FIELDS
    Hu, Yi
    Niu, Jingchen
    ASIAN JOURNAL OF MATHEMATICS, 2021, 25 (05) : 683 - 714
  • [39] The orbifold cohomology of moduli of genus 3 curves
    N. Pagani
    O. Tommasi
    Manuscripta Mathematica, 2013, 142 : 409 - 437
  • [40] The geometry of the moduli space of curves of genus 23
    Farkas, G
    MATHEMATISCHE ANNALEN, 2000, 318 (01) : 43 - 65