Painleve analysis and symmetry group for the coupled Zakharov-Kuznetsov equation

被引:4
|
作者
Hu Heng-Chun [1 ]
Jia Xiao-Qing [1 ]
Sang Ben-Wen [1 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled ZK equation; Painleve analysis; Symmetry group transformation; SIMILARITY REDUCTIONS; COMPLEXITON SOLUTIONS; KORTEWEG-DEVRIES; TRUNCATION; EXPANSION; POSITON; NEGATON;
D O I
10.1016/j.physleta.2011.07.058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Painleve property for the coupled Zakharov-Kuznetsov equation is verified with the WTC approach and new exact solutions of bell-type are constructed from standard truncated expansion. A symmetry transformation group theorem is also given out from a simple direct method. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3459 / 3463
页数:5
相关论文
共 50 条
  • [21] Symmetry analysis and conservation laws of a further modified 3D Zakharov-Kuznetsov equation
    Goitsemang, T.
    Mothibi, D. M.
    Muatjetjeja, B.
    Motsumi, T. G.
    RESULTS IN PHYSICS, 2020, 19
  • [22] New Exact Solutions of Zakharov-Kuznetsov Equation
    HU Heng-Chun College of Science
    Communications in Theoretical Physics, 2008, 49 (03) : 559 - 561
  • [23] EXACT CONTROLLABILITY OF THE LINEAR ZAKHAROV-KUZNETSOV EQUATION
    Chen, Mo
    Rosier, Lionel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (10): : 3889 - 3916
  • [24] Symmetry reductions of the (3+1)-dimensional modified Zakharov-Kuznetsov equation
    Liu, Yamin
    Teng, Qingyong
    Tai, Weipeng
    Zhou, Jianping
    Wang, Zhen
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [25] New exact solutions of Zakharov-Kuznetsov equation
    Heng-Chun, Hu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (03) : 559 - 561
  • [26] The Zakharov-Kuznetsov equation in weighted Sobolev spaces
    Bustamante, Eddye
    Jimenez Urrea, Jose
    Mejia, Jorge
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 149 - 175
  • [27] On decay properties for solutions of the Zakharov-Kuznetsov equation
    Mendez, A. J.
    Riano, Oscar
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
  • [28] On the propagation of regularity for solutions of the Zakharov-Kuznetsov equation
    Mendez, Argenis J.
    ANALYSIS AND APPLICATIONS, 2024, 22 (01) : 137 - 177
  • [29] On uniqueness properties of solutions of the Zakharov-Kuznetsov equation
    Bustamante, Eddye
    Isaza, Pedro
    Mejia, Jorge
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (11) : 2529 - 2549
  • [30] Unique continuation property for the Zakharov-Kuznetsov equation
    Chen, Mo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (05) : 1273 - 1281