Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials

被引:93
|
作者
Dong, Shengde [1 ,2 ,3 ]
Zhou, Yuan [1 ,2 ]
Hai, Chunxi [1 ,2 ]
Zeng, Jinbo [1 ,2 ]
Sun, Yanxia [1 ,2 ]
Shen, Yue [1 ,2 ]
Li, Xiang [1 ,2 ]
Ren, Xiufeng [1 ,2 ]
Sun, Chao [1 ,2 ,3 ]
Zhang, Guotai [1 ,2 ,3 ]
Wu, Zhaowei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, 18th Xinning Rd, Xining 810008, Peoples R China
[2] Key Lab Salt Lake Resources Chem Qinghai Prov, Xining 810008, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Lithium-rich manganese-based cathode materials; Li-ion battery; Nb doping; Electrochemical performance; Density functional theory; CYCLING STABILITY; LI1.2MN0.54NI0.13CO0.13O2; CATHODE; RATE CAPABILITY; SURFACE MODIFICATION; RECENT PROGRESS; OXIDE CATHODES; VOLTAGE DECAY; LI; ELECTRODES; NI;
D O I
10.1016/j.jpowsour.2020.228185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study synthesizes pristine and Nb-doped lithium-rich manganese-based cathode materials by solvothermal and high-temperature solid-phase methods. Analysis by focused ion beam scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy indicates successful Nb doping into the material's bulk structure. Electrochemical evaluation reveals that electrochemical performance is significantly enhanced by Nb doping. The discharge capacity of Nb-0.02 can maintain 271.7 mAh.g(-1), and its cycle retention rate is up to 98.50% after 300 cycles at 0.2C; however, under the same parameters, the pristine material's discharge capacity and cycle retention rate are 212.8 mAh.g(-1) and 86.68%. The initial coulombic efficiency and initial discharge capacity of Nb-0.02 is 86.94% and 287.5 mAh.g(-1), while that of the pristine material is 73.59% and 234.2 mAh.g(-1). Density functional theory calculations demonstrate that Nb doping accelerates Li-ion diffusion and stabilizes material structure due to stronger Nb-O bonds from reduced Li-ion migration barrier energy. Thus, the proposed modification strategy for Nb doping can illuminate the structural design of lithium-rich manganese-based cathode materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effect of sites of doped Mg on the stability of lattice oxygen in lithium-rich manganese-based cathode materials
    Cui, Xiaoling
    Zhou, Junfei
    Ding, Hao
    Cai, Xingpeng
    Zhang, Jiawen
    Hu, Xinyi
    Zhang, Junwei
    Li, Xin
    Zhu, Junlong
    Zhang, Ningshuang
    Li, Shiyou
    JOURNAL OF POWER SOURCES, 2024, 623
  • [32] Thiourea treatment broadens the lattice structure to enhance the electrochemical stability of lithium-rich manganese-based materials
    Zhao, Zhifeng
    Feng, Wangjun
    Su, Wenxiao
    Niu, Yueping
    Hu, Wenting
    Zheng, Xiaoping
    Zhang, Li
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2025, 29 (02) : 571 - 583
  • [33] Effect of Titanium Doping of Lithium-Rich Cathode Materials
    Pechen, L. S.
    Makhonina, E., V
    Medvedeva, A. E.
    Politov, Yu A.
    Eremenko, I. L.
    DOKLADY PHYSICAL CHEMISTRY, 2022, 502 (01) : 7 - 10
  • [34] Stabilizing the Lithium-Rich Manganese-Based Oxide Cathode via Regulating a CEI Film
    Feng, Zhuoran
    Guo, Leyi
    Liu, Xiaofei
    Li, Wenwen
    Zhang, Ruipeng
    Wang, Dong
    Zhang, Wei
    Zheng, Weitao
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (07) : 2791 - 2799
  • [35] Trace level doping of lithium-rich cathode materials
    Lengyel, Miklos
    Shen, Kuan-Yu
    Lanigan, Deanna M.
    Martin, Jonathan M.
    Zhang, Xiaofeng
    Axelbaum, Richard L.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (09) : 3538 - 3545
  • [36] Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application
    Lu, Zhiyuan
    Liu, Yanni
    Liao, Shijun
    PROGRESS IN CHEMISTRY, 2020, 32 (10) : 1504 - 1514
  • [37] Mitigating chain degradation of lithium-rich manganese-based cathode material by surface engineering
    Cai, Xingpeng
    Li, Shiyou
    Zhou, Junfei
    Zhang, Jiawen
    Zhang, Ningshuang
    Cui, Xiaoling
    ENERGY STORAGE MATERIALS, 2024, 71
  • [38] Effect of Titanium Doping of Lithium-Rich Cathode Materials
    L. S. Pechen
    E. V. Makhonina
    A. E. Medvedeva
    Yu. A. Politov
    I. L. Eremenko
    Doklady Physical Chemistry, 2022, 502 : 7 - 10
  • [39] Influence of Tin and Titanium on the Electrochemical Performance of Lithium-Rich Cathode Materials
    L. S. Pechen
    E. V. Makhonina
    A. E. Medvedeva
    Yu. A. Politov
    A. M. Rumyantsev
    Yu. M. Koshtyal
    Inorganic Materials, 2022, 58 : 1033 - 1042
  • [40] Influence of Tin and Titanium on the Electrochemical Performance of Lithium-Rich Cathode Materials
    Pechen, L. S.
    Makhonina, E. V.
    Medvedeva, A. E.
    Politov, Yu. A.
    Rumyantsev, A. M.
    Koshtyal, Yu. M.
    INORGANIC MATERIALS, 2022, 58 (10) : 1033 - 1042