Recovery time of a plasma-wakefield accelerator

被引:30
|
作者
D'Arcy, R. [1 ]
Chappell, J. [2 ]
Beinortaite, J. [1 ,2 ]
Diederichs, S. [1 ,3 ]
Boyle, G. [1 ]
Foster, B. [4 ]
Garland, M. J. [1 ]
Caminal, P. Gonzalez [1 ,3 ]
Lindstrom, C. A. [1 ]
Loisch, G. [1 ]
Schreiber, S. [1 ]
Schroeder, S. [1 ]
Shalloo, R. J. [1 ]
Thevenet, M. [1 ]
Wesch, S. [1 ]
Wing, M. [1 ,2 ]
Osterhoff, J. [1 ]
机构
[1] DESY, Hamburg, Germany
[2] UCL, London, England
[3] Univ Hamburg, Hamburg, Germany
[4] Univ Oxford, John Adams Inst, Dept Phys, Oxford, England
关键词
ELECTRON-BEAM; LASER; DYNAMICS;
D O I
10.1038/s41586-021-04348-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interaction of intense particle bunches with plasma can give rise to plasma wakes(1,2) capable of sustaininggigavolt-per-metre electric fields(3,4), which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology(5). Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunchesto be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology(6,7). Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities.
引用
收藏
页码:58 / +
页数:10
相关论文
共 50 条
  • [41] Scheme for proton-driven plasma-wakefield acceleration of positively charged particles in a hollow plasma channel
    Yi, Longqing
    Shen, Baifei
    Lotov, Konstantin
    Ji, Liangliang
    Zhang, Xiaomei
    Wang, Wenpeng
    Zhao, Xueyan
    Yu, Yahong
    Xu, Jiancai
    Wang, Xiaofeng
    Shi, Yin
    Zhang, Lingang
    Xu, Tongjun
    Xu, Zhizhan
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2013, 16 (07):
  • [42] Scaling of energy gain with plasma parameters in a plasma wakefield accelerator
    Muggli, P.
    Katsouleas, T.
    Oz, E.
    Blumenfeld, I.
    Decker, F. -J.
    Hogan, M. J.
    Ischebeck, R.
    Iverson, R.
    Kirby, N.
    Siemann, R.
    Walz, D.
    Clayton, C. E.
    Huang, C.
    Joshi, C.
    Lu, W.
    Marsh, K. A.
    Mori, W. B.
    Zhou, M.
    2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11, 2007, : 2320 - +
  • [43] Optimized stability of a modulated driver in a plasma wakefield accelerator
    Martorelli, R.
    Pukhov, A.
    LASER AND PARTICLE BEAMS, 2016, 34 (03) : 519 - 526
  • [44] Simulations of a meter-long plasma wakefield accelerator
    Lee, S
    Katsouleas, T
    Hemker, R
    Mori, WB
    PHYSICAL REVIEW E, 2000, 61 (06): : 7014 - 7021
  • [45] Oscillation damper for misaligned witness in plasma wakefield accelerator
    Lotov, Konstantin V.
    Kargapolov, Ivan Yu.
    Tuev, Petr V.
    PHYSICS OF PLASMAS, 2024, 31 (12)
  • [46] Multimode analysis of the hollow plasma channel wakefield accelerator
    Schroeder, CB
    Whittum, DH
    Wurtele, JS
    PHYSICAL REVIEW LETTERS, 1999, 82 (06) : 1177 - 1180
  • [47] Acceleration of a trailing positron bunch in a plasma wakefield accelerator
    A. Doche
    C. Beekman
    S. Corde
    J. M. Allen
    C. I. Clarke
    J. Frederico
    S. J. Gessner
    S. Z. Green
    M. J. Hogan
    B. O’Shea
    V. Yakimenko
    W. An
    C. E. Clayton
    C. Joshi
    K. A. Marsh
    W. B. Mori
    N. Vafaei-Najafabadi
    M. D. Litos
    E. Adli
    C. A. Lindstrøm
    W. Lu
    Scientific Reports, 7
  • [48] A new type of plasma wakefield accelerator driven by magnetowaves
    Chen, Pisin
    Chang, Feng-Yin
    Lin, Guey-Lin
    Noble, Robert J.
    Sydora, Richard
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (02)
  • [49] Nonlinear plasma wavelength scalings in a laser wakefield accelerator
    Ding, H.
    Doepp, A.
    Gilljohann, M.
    Goetzfried, J.
    Schindler, S.
    Wildgruber, L.
    Cheung, G.
    Hooker, S. M.
    Karsch, S.
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [50] Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator
    Kirby, N.
    Blumenfeld, I.
    Clayton, C. E.
    Decker, F. J.
    Hogan, M. J.
    Huang, C.
    Ischebeck, R.
    Iverson, R. H.
    Joshi, C.
    Katsouleas, T.
    Lu, W.
    Marsh, K. A.
    Martins, S.
    Mori, W. B.
    Muggli, P.
    Oz, E.
    Siemann, R. H.
    Walz, D. R.
    Zhou, M.
    ADVANCED ACCELERATOR CONCEPTS, 2009, 1086 : 591 - +