Phase II monitoring of logistic regression profiles with estimated parameters

被引:1
|
作者
Maleki, Mohammad Reza [1 ]
Salmasnia, Ali [2 ]
Maboudou-Tchao, Edgard M. [3 ]
Khanbeygi, Parnaz [4 ]
机构
[1] Isfahan Univ Technol, Golpayegan Coll Engn, Ind Engn Grp, Golpayegan 87717, Iran
[2] Univ Qom, Fac Engn, Dept Ind Engn, Qom, Iran
[3] Univ Cent Florida, Dept Stat, Orlando, FL 32816 USA
[4] Univ Eyvanekey, Dept Ind Engn, Eyvanekey, Iran
关键词
Profile monitoring; logistic regression profile; parameter estimation; Phase II; average run length; CONTROL CHARTS; LINEAR PROFILES; PERFORMANCE; (X)OVER-BAR;
D O I
10.1080/00949655.2022.2045293
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In most profile monitoring applications, the regression parameters are unknown and must be estimated via Phase I reference samples. This study evaluates how parameter estimation affects the average run length (ARL) properties of two well-known charts in Phase II monitoring of logistic regression profiles. In this regard, the performance of T-2 and MEWMA charts established by estimated regression parameters is evaluated for both in-control and out-of-control situations. The results of simulation experiments confirm that estimation error affects the ARL properties of both T-2 and MEWMA charts. Two remedial procedures of increasing the Phase I samples and control limit modification are employed to compensate for the estimation error impact. Then, an illustrative example based on simulated data is given to indicate the impact of estimation error on detection ability of T-2 chart. Finally, a real-life example is provided to represent how estimation error increases the false alarm rate of T-2 chart.
引用
收藏
页码:2721 / 2739
页数:19
相关论文
共 50 条
  • [41] Genetic parameters of claw and foot disorders estimated with logistic models
    Koenig, S
    Sharifi, AR
    Wentrot, H
    Landmann, D
    Eise, M
    Simianer, H
    JOURNAL OF DAIRY SCIENCE, 2005, 88 (09) : 3316 - 3325
  • [42] The Performance of Phase II Simple Linear Profile Approaches when Parameters Are Estimated
    Mahmoud, Mahmoud A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2012, 41 (10) : 1816 - 1833
  • [43] Pain Monitoring Using Heart Rate Variability and Photoplethysmograph-Derived Parameters by Binary Logistic Regression
    Jhang, D. F.
    Chu, Y. S.
    Cai, J. H.
    Tai, Y. Y.
    Chuang, C. C.
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2021, 41 (05) : 669 - 677
  • [44] Pain Monitoring Using Heart Rate Variability and Photoplethysmograph-Derived Parameters by Binary Logistic Regression
    D. F. Jhang
    Y. S. Chu
    J. H. Cai
    Y. Y. Tai
    C. C. Chuang
    Journal of Medical and Biological Engineering, 2021, 41 : 669 - 677
  • [45] Nonparametric monitoring schemes in Phase II for ordinal profiles with application to customer satisfaction monitoring
    Wang, Ying
    Li, Jinmeng
    Ma, Yanhui
    Song, Lisha
    Wang, Zhiqiong
    COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 165
  • [46] Ranking of author assessment parameters using Logistic Regression
    Usman, Muhammad
    Mustafa, Ghulam
    Afzal, Muhammad Tanvir
    SCIENTOMETRICS, 2021, 126 (01) : 335 - 353
  • [47] Ranking of author assessment parameters using Logistic Regression
    Muhammad Usman
    Ghulam Mustafa
    Muhammad Tanvir Afzal
    Scientometrics, 2021, 126 : 335 - 353
  • [48] Interpreting parameters in the logistic regression model with random effects
    Larsen, K
    Petersen, JH
    Budtz-Jorgensen, E
    Endahl, L
    BIOMETRICS, 2000, 56 (03) : 909 - 914
  • [49] COVARIANCE OF ESTIMATED PARAMETERS IN ARMA REGRESSION-MODELS
    HILL, R
    ANNALS OF ECONOMIC AND SOCIAL MEASUREMENT, 1977, 6 (01): : 109 - 122
  • [50] Monitoring the Shape Parameter of a Weibull Regression Model in Phase II Processes
    Arturo Panza, Carlos
    Alberto Vargas, Jose
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (01) : 195 - 207