Testing linearity in partial functional linear quantile regression model based on regression rank scores

被引:2
|
作者
Yu, Ping [1 ,2 ]
Du, Jiang [1 ]
Zhang, Zhongzhan [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041000, Shanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Functional data analysis; Functional linear quantile regression; Functional principal component analysis; Rank score test; ESTIMATORS;
D O I
10.1007/s42952-020-00070-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates the hypothesis test of the parametric component in partial functional linear quantile regression model in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. A quantile rank score test based on functional principal component analysis is developed. Under mild conditions, we establish the consistency of the proposed test statistic, and show that the proposed test can detect Pitman local alternatives converging to the null hypothesis at the usual parametric rate. A simulation study shows that the proposed test procedure has good size and power with finite sample sizes. Finally, an illustrative example is given through fitting the Berkeley growth data and testing the effect of gender on the height of kids.
引用
收藏
页码:214 / 232
页数:19
相关论文
共 50 条
  • [31] ESTIMATION IN FUNCTIONAL LINEAR QUANTILE REGRESSION
    Kato, Kengo
    ANNALS OF STATISTICS, 2012, 40 (06): : 3108 - 3136
  • [32] REGRESSION RANK SCORES AND REGRESSION QUANTILES
    GUTENBRUNNER, C
    JURECKOVA, J
    ANNALS OF STATISTICS, 1992, 20 (01): : 305 - 330
  • [33] Testing for marginal linear effects in quantile regression
    Wang, Huixia Judy
    McKeague, Ian W.
    Qian, Min
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (02) : 433 - 452
  • [34] Testing in linear composite quantile regression models
    Rong Jiang
    Wei-Min Qian
    Jing-Ru Li
    Computational Statistics, 2014, 29 : 1381 - 1402
  • [35] Testing in linear composite quantile regression models
    Jiang, Rong
    Qian, Wei-Min
    Li, Jing-Ru
    COMPUTATIONAL STATISTICS, 2014, 29 (05) : 1381 - 1402
  • [36] Wavelet-based LASSO in functional linear quantile regression
    Wang, Yafei
    Kong, Linglong
    Jiang, Bei
    Zhou, Xingcai
    Yu, Shimei
    Zhang, Li
    Heo, Giseon
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (06) : 1111 - 1130
  • [37] Frequentist model averaging estimation for the censored partial linear quantile regression model
    Sun, Zhimeng
    Sun, Liuquan
    Lu, Xiaoling
    Zhu, Ji
    Li, Yongzhuang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 189 : 1 - 15
  • [38] Partial functional linear regression
    Shin, Hyejin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (10) : 3405 - 3418
  • [39] Moving Beyond the Linear Regression Model: Advantages of the Quantile Regression Model
    Li, Mingxiang
    JOURNAL OF MANAGEMENT, 2015, 41 (01) : 71 - 98
  • [40] Functional Linear Partial Quantile Regression with Guaranteed Convergence for Neuroimaging Data Analysis
    Yu, Dengdeng
    Pietrosanu, Matthew
    Mizera, Ivan
    Jiang, Bei
    Kong, Linglong
    Tu, Wei
    STATISTICS IN BIOSCIENCES, 2024, 17 (1) : 174 - 190