Multi-kernel growing Support Vector Regressor

被引:0
|
作者
Gutiérrez-González, D [1 ]
Parrado-Hernández, E [1 ]
Navia-Vázquez, A [1 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Proc & Commun, Madrid 28911, Spain
关键词
CLASSIFIERS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method to iteratively grow a compact Support Vector Regressor so that the balance between size of the machine and its performance can be user-controlled. The algorithm is able to combine Gaussian kernels with different spread parameter, skipping the 'a priori' parameter estimation by allowing a progressive incorporation of nodes with decreasing values of the spread parameter, until a cross-validation stopping criterion is met. Experimental results show the significant reduction achieved in the size of the machines trained with this new algorithm and their good generalization capabilities.
引用
收藏
页码:357 / 365
页数:9
相关论文
共 50 条
  • [41] Sparse regression mixture modeling with the multi-kernel relevance vector machine
    Konstantinos Blekas
    Aristidis Likas
    Knowledge and Information Systems, 2014, 39 : 241 - 264
  • [42] Gearbox fault diagnosis based on multi-kernel support vector machine optimized by genetic simulated annealing algorithm
    Chen, Fafa, 1600, Nanjing University of Aeronautics an Astronautics (34):
  • [43] Multi-kernel support vector regression with improved moth-flame optimization algorithm for software effort estimation
    Li, Jing
    Sun, Shengxiang
    Xie, Li
    Zhu, Chen
    He, Dubo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility
    Liu, Jiping
    Liang, Enjie
    Xu, Shenghua
    Liu, Mengmeng
    Wang, Yong
    Zhang, Fuhao
    Luo, An
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (10): : 2034 - 2045
  • [45] Multi-Kernel Support Vector Machine and Levenberg-Marquardt Classification Approach for Neonatal Brain MR Images
    Jaware, Tushar H.
    Khanchandani, K. B.
    Zurani, Anita
    PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, INTELLIGENT CONTROL AND ENERGY SYSTEMS (ICPEICES 2016), 2016,
  • [46] Sparse regression mixture modeling with the multi-kernel relevance vector machine
    Blekas, Konstantinos
    Likas, Aristidis
    KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 39 (02) : 241 - 264
  • [47] Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine
    Zhao, Hongshan
    Gao, Yufeng
    Liu, Huihai
    Li, Lang
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2019, 7 (02) : 350 - 356
  • [48] Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine
    Hongshan ZHAO
    Yufeng GAO
    Huihai LIU
    Lang LI
    JournalofModernPowerSystemsandCleanEnergy, 2019, 7 (02) : 350 - 356
  • [49] Weighted prediction method with multiple time series using multi-kernel least squares support vector regression
    Metoda ważonej predykcji wielokrotnych szeregów czasowych z wykorzystaniem wielojądrowej regresji wektorów wspierających metodą najmniejszych kwadratów
    2013, Polish Academy of Sciences Branch Lublin (15) : 188 - 194
  • [50] WEIGHTED PREDICTION METHOD WITH MULTIPLE TIME SERIES USING MULTI-KERNEL LEAST SQUARES SUPPORT VECTOR REGRESSION
    Guo, Yang-Ming
    Ran, Cong-Bao
    Li, Xiao-Lei
    Ma, Jie-Zhong
    Zhang, Lu
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2013, 15 (02): : 188 - 194