MoS2/Graphene Hybrid Nanoflowers with Enhanced Electrochemical Performances as Anode for Lithium-Ion Batteries

被引:139
|
作者
Li, Honglin [1 ]
Yu, Ke [1 ]
Fu, Hao [1 ]
Guo, Bangjun [1 ]
Lei, Xiang [1 ]
Zhu, Ziqiang [1 ]
机构
[1] E China Normal Univ, Dept Elect Engn, Key Lab Polar Mat & Devices, Minist Educ China, Shanghai 200241, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2015年 / 119卷 / 14期
关键词
FINDING SADDLE-POINTS; ASSISTED SYNTHESIS; MOS2; NANOPARTICLES; COMPOSITES; GRAPHENE; HYDRODEOXYGENATION; ARCHITECTURES; NANOSHEETS; CAPACITY; BIOMASS;
D O I
10.1021/acs.jpcc.5b00890
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we studied the synthesis and electrochemical performance of MoS2 and reduced graphene oxide (rGO) hybrid nanoflowers for use as anode material in lithium ion batteries (LIBs). The morphology and microstructure of the samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). Herein, the composite nanoflowers delivered a significant enhanced reversible specific capacity and charge/discharge cycle stabilities as anode in comparison with pristine MoS2. Electrochemical impedance spectroscopy (EIS) measurements indicated that the incorporation of rGO significantly reduced the contact resistance and the improved electrochemical performances could be attributed to the synergy effect between the functions of MoS2 and rGO. A high reversible capacity of 1150 mAh/g at a current of 0.1 A/g could be retained without fading after 60 cycles. The rate performance of the composite was also improved, and the specific capacity remained at the relative high value of 890 mAh/g even at a current of 1 A/g. In order to further systematically study the mechanism of the improved LIBs performances for composite, we constructed the corresponding models based on experiment data and conducted a first-principles calculation. The nudged elastic band (NEB) method was employed to study the diffusion of Li in different structures. The calculated results proved that the diffusion barrier for Li in MoS2/graphene was significantly lower than that in pristine MoS2 and presented a theoretical explanation for a better diffusivity property. The high specific capacity and excellent cycling stability of these hybrid nanoflowers are competent as a promising anode material for high-performance LIBs.
引用
收藏
页码:7959 / 7968
页数:10
相关论文
共 50 条
  • [21] Synthesis and electrochemical performance of a spherical flower-like MoS2 /graphene anode material for lithium ion batteries
    Mou Yan-pu
    Wang Cong
    Zhan Liang
    Liu Xiang
    Wang Yan-li
    NEW CARBON MATERIALS, 2016, 31 (06) : 609 - 614
  • [22] Interlayer-expanded MoS2/graphene composites as anode materials for high-performance lithium-ion batteries
    Yanjie Wang
    Mengmeng Zhen
    Huiling Liu
    Cheng Wang
    Journal of Solid State Electrochemistry, 2018, 22 : 3069 - 3076
  • [23] Interlayer-expanded MoS2/graphene composites as anode materials for high-performance lithium-ion batteries
    Wang, Yanjie
    Zhen, Mengmeng
    Liu, Huiling
    Wang, Cheng
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (10) : 3069 - 3076
  • [24] Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries
    Guo, Peng
    Song, Huaihe
    Chen, Xiaohong
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) : 1320 - 1324
  • [25] Hierarchical MoS2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries
    Yang, Lichun
    Wang, Sinong
    Mao, Jianjiang
    Deng, Junwen
    Gao, Qingsheng
    Tang, Yi
    Schmidt, Oliver G.
    ADVANCED MATERIALS, 2013, 25 (08) : 1180 - 1184
  • [26] Electrochemical Performances on Both poly(Phenylenediamine) Derivatives as Anode of Lithium-Ion Batteries
    Xu, Lihuan
    Sun, Yue
    Han, Bing
    Su, Chang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) : A1363 - A1369
  • [27] Facile synthesis of nanoflower-like MoS2/C as anode for lithium-ion batteries
    Wang, Zhe
    Cui, Yongjian
    Yang, Jia
    Wang, Tongshuai
    Li, Bowen
    Wang, Hailong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (07) : 2463 - 2471
  • [28] Enhanced Electrochemical Performance of MoS2 for Lithium Ion Batteries by Simple Chemical Lithiation
    Li, Dan
    Zhang, Chaofeng
    Du, Guodong
    Zeng, Rong
    Wang, Shiquan
    Guo, Zaiping
    Chen, Zhixin
    Liu, Huakun
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2012, 59 (10) : 1196 - 1200
  • [29] Overview of Graphene as Anode in Lithium-Ion Batteries
    Ri-Peng Luo
    Wei-Qiang Lyu
    Ke-Chun Wen
    Wei-Dong He
    JournalofElectronicScienceandTechnology, 2018, 16 (01) : 57 - 68
  • [30] L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries
    Chang, Kun
    Chen, Weixiang
    ACS NANO, 2011, 5 (06) : 4720 - 4728