Classification of finite congruence-simple semirings with zero

被引:38
|
作者
Zumbragel, Jens [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
semirings; lattices; endomorphism semirings; semimodules;
D O I
10.1142/S0219498808002862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our main result states that a finite semiring of order > 2 with zero which is not a ring is congruence-simple if and only if it is isomorphic to a "dense" subsemiring of the endomorphism semiring of a finite idempotent commutative monoid. We also investigate those subsemirings further, addressing e. g. the question of isomorphy.
引用
收藏
页码:363 / 377
页数:15
相关论文
共 50 条
  • [41] INTRODUCTION TO THE CLASSIFICATION OF FINITE SIMPLE GROUPS
    ASCHBACHER, M
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (01) : 39 - 41
  • [42] Semirings which are distributive lattices of t-k-simple semirings
    Mondal, Tapas Kumar
    Bhuniva, Aldan Kumar
    TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02): : 149 - 157
  • [43] Zero divisors for matrices over commutative semirings
    Kanan, Asmaa M.
    SCIENCEASIA, 2016, 42 (05): : 362 - 365
  • [44] The finite basis problem for ai-semirings obtained from a commutative flat semiring by adjoining a zero
    Zhao, Xianzhong
    Wu, Yanan
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [45] On semirings whose simple semimodules are projective
    Il'in, S. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (02) : 215 - 226
  • [46] On distributive lattices of simple ordered semirings
    Mondal, T. K.
    Chowdhury, J.
    Bhuniya, A. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (07)
  • [47] Zero divisors and prime elements of bounded semirings
    Tongsuo Wu
    Yuanlin Li
    Dancheng Lu
    Frontiers of Mathematics in China, 2014, 9 : 1381 - 1399
  • [48] Bi-ideal-simple semirings
    Flaska, Vaclav
    Kepka, Tomas
    Saroch, Jan
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2005, 46 (03): : 391 - 397
  • [49] On semirings whose simple semimodules are projective
    S. N. Il’in
    Siberian Mathematical Journal, 2017, 58 : 215 - 226
  • [50] Circuits and Expressions over Finite Semirings
    Ganardi, Moses
    Hucke, Danny
    Koenig, Daniel
    Lohrey, Markus
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2018, 10 (04)