Identification of Nonlinear Lateral Flow Immunoassay State-Space Models via Particle Filter Approach

被引:37
|
作者
Zeng, Nianyin [1 ,2 ]
Wang, Zidong [3 ]
Li, Yurong [2 ]
Du, Min [2 ]
Liu, Xiaohui [3 ]
机构
[1] Fuzhou Univ, Coll Elect Engn & Automat, Fuzhou 350002, Peoples R China
[2] Fujian Key Lab Med Instrumentat & Pharmaceut Tech, Fuzhou 350002, Peoples R China
[3] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
关键词
Extended Kalman filter (EKF); lateral flow immunoassay (LFIA); parameter estimation; particle filter; state estimation; PARAMETER-ESTIMATION; ASSAY; ENHANCEMENT;
D O I
10.1109/TNANO.2011.2171193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 50 条
  • [21] A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems
    Pan, Wei
    Yuan, Ye
    Goncalves, Jorge
    Stan, Guy-Bart
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (01) : 182 - 187
  • [22] Marginalized particle filters for mixed linear/nonlinear state-space models
    Schön, T
    Gustafsson, F
    Nordlund, PJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) : 2279 - 2289
  • [23] Bayesian identification of state-space models via adaptive thermostats
    Umenberger, Jack
    Schon, Thomas B.
    Lindsten, Fredrik
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7382 - 7388
  • [24] A STABLE PARTICLE FILTER FOR A CLASS OF HIGH-DIMENSIONAL STATE-SPACE MODELS
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kamatani, Kengo
    Zhou, Yan
    ADVANCES IN APPLIED PROBABILITY, 2017, 49 (01) : 24 - 48
  • [25] Comparison of some initialisation methods for the identification of nonlinear state-space models
    Van Mulders, Anne
    Vanbeylen, Laurent
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 807 - 811
  • [26] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [27] State-Space Models for Control and Identification
    2005, Springer Verlag (308):
  • [28] Identification of structured state-space models
    Yu, Chengpu
    Ljung, Lennart
    Verhaegen, Michel
    AUTOMATICA, 2018, 90 : 54 - 61
  • [29] IDENTIFICATION OF A CLASS OF NONLINEAR STATE-SPACE MODELS USING RPE TECHNIQUES
    ZHOU, WW
    BLANKE, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (03) : 312 - 316
  • [30] State-space models for control and identification
    Raynaud, HF
    Kulcsár, C
    Hammi, R
    ADVANCES IN COMMUNICATION CONTROL NETWORKS, 2005, 308 : 177 - 197