Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa

被引:91
|
作者
Verma, Deepika [1 ]
Lakhanpal, Neha [1 ]
Singh, Kashmir [1 ]
机构
[1] Panjab Univ, Dept Biotechnol, BMS Block 1,Sect 25, Chandigarh 160014, India
关键词
Superoxide dismutase; Gene family; Brassica juncea; B; rapa; Genome-wide analysis; Abiotic stress; Differential expression; TRANSCRIPTOME ANALYSIS; OXIDATIVE STRESS; RNA-SEQ; EXPRESSION; TOLERANCE; DROUGHT; OVERPRODUCTION; VISUALIZATION; RESISTANCE;
D O I
10.1186/s12864-019-5593-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundAbiotic stresses like drought, heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica). Major efforts have been made in the past to identify genes that provide resistance against such stresses. Superoxide dismutase (SOD) proteins, member of the metallo-enzyme family play vital role in protecting plants against abiotic stresses. In the present study, genome-wide analysis of abiotic stress responsive SOD gene family has been done in B. juncea and B. rapa.ResultsA total of 29 and 18 SOD genes were identified in B. juncea and B. rapa respectively and chromosome location mapping indicated their wide distribution across genome. On the basis of domain composition, the SODs were phylogenetically classified into sub-groups which was also substantiated by the gene structure and sub-cellular locations of SOD proteins. Functional annotation of SODs was also done by Gene Ontology (GO) mapping and the result was corroborated by the identified cis-regulatory elements in the promoter region of SOD genes. Based on FPKM analysis of SRA data available for drought, heat and salt stress, we identified 14 and 10 abiotic stress responsive SOD genes in B. rapa and B. juncea respectively. The differential expression analysis under drought and heat stress of identified abiotic-stress responsive SOD genes was done through quantitative Real Time PCR.ConclusionWe identified abiotic-stress responsive genes that could help in improving the plant tolerance against abiotic stresses. This was the first study to describe the genome-wide analysis of SOD gene family in B. rapa and B. juncea, and the results will help in laying basic ground for future work of cloning and functional validation of SOD genes during abiotic stresses leading to Brassica crop improvement.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa
    Zhang, Xiaoyu
    Li, Jiali
    Cao, Yunyun
    Huang, Jiabao
    Duan, Qiaohong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [22] Genome-Wide Identification and Characterisation of Abiotic Stress Responsive mTERF Gene Family in Amaranthus hypochondriacus
    Hajyzadeh, Mortaza
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (05) : 1649 - 1664
  • [23] Genome-Wide Identification and Characterization of the Msr Gene Family in Alfalfa under Abiotic Stress
    Zhao, Xianglong
    Han, Xiao
    Lu, Xuran
    Yang, Haoyue
    Wang, Zeng-Yu
    Chai, Maofeng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [24] Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium
    Zhang, Jingbo
    Li, Bo
    Yang, Yang
    Hu, Wenran
    Chen, Fangyuan
    Xie, Lixia
    Fan, Ling
    INTERNATIONAL JOURNAL OF GENOMICS, 2016, 2016
  • [25] Genome-Wide Identification and Analysis of the Ascorbate Peroxidase (APX) Gene Family of Winter Rapeseed (Brassica rapa L.) Under Abiotic Stress
    Ma, Li
    Qi, Weiliang
    Bai, Jing
    Li, Haiyun
    Fang, Yan
    Xu, Jia
    Xu, Yaozhao
    Zeng, Xiucun
    Pu, Yuanyuan
    Wang, Wangtian
    Liu, Lijun
    Li, Xuecai
    Sun, Wancang
    Wu, Junyan
    FRONTIERS IN GENETICS, 2022, 12
  • [26] Genome-wide characterization of Remorin gene family and their responsive expression to abiotic stresses and plant hormone in Brassica napus
    Sun, Nan
    Zhou, Jiale
    Liu, Yanfeng
    Li, Dong
    Xu, Xin
    Zhu, Zihao
    Xu, Xuesheng
    Zhan, Renhui
    Zhang, Hongxia
    Wang, Limin
    PLANT CELL REPORTS, 2024, 43 (06)
  • [27] Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa
    Lee, Sang-Choon
    Lim, Myung-Ho
    Yu, Jae-Gyeong
    Park, Beom-Seok
    Yang, Tae-Jin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2012, 61 : 142 - 152
  • [28] Genome-Wide Classification and Abiotic Stress-Responsive Expression Profiling of Carotenoid Oxygenase Genes in Brassica rapa and Brassica oleracea
    Kim, Yonguk
    Hwang, Indeok
    Jung, Hee-Jeong
    Park, Jong-In
    Kang, Jong-Goo
    Nou, Ill-Sup
    JOURNAL OF PLANT GROWTH REGULATION, 2016, 35 (01) : 202 - 214
  • [29] Genome-Wide Classification and Abiotic Stress-Responsive Expression Profiling of Carotenoid Oxygenase Genes in Brassica rapa and Brassica oleracea
    Yonguk Kim
    Indeok Hwang
    Hee-Jeong Jung
    Jong-In Park
    Jong-Goo Kang
    Ill-Sup Nou
    Journal of Plant Growth Regulation, 2016, 35 : 202 - 214
  • [30] Genome-wide identification and characterization of Chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicae
    Mir, Zahoor Ahmad
    Ali, Sajad
    Shivaraj, S. M.
    Bhat, Javaid Akhter
    Singh, Apekshita
    Yadav, Prashant
    Rawat, Sandhya
    Paplao, Pradeep K.
    Grover, Anita
    GENOMICS, 2020, 112 (01) : 749 - 763