On the generalized Ramanujan-Nagell equation x2

被引:0
|
作者
Yu, Yahui [1 ]
Hu, Jiayuan [2 ]
机构
[1] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Henan, Peoples R China
[2] Hetao Coll, Dept Math & Comp, Bayannur 015000, Inner Mongolia, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 10期
关键词
polynomial-exponential diophantine equation; generalized Ramanujan-Nagell equation;
D O I
10.3934/math.2021615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a fixed positive integer with k > 1. In 2014, N. Terai [6] conjectured that the equation x(2) + (2k - 1)(y) = k(z) has only the positive integer solution (x, y, z) = (k - 1, 1, 2). This is still an unsolved problem as yet. For any positive integer n, let Q(n) denote the squarefree part of n. In this paper, using some elementary methods, we prove that if k equivalent to 3 (mod 4) and Q(k - 1) >= 2.11 log k, then the equation has only the positive integer solution (x, y, z) = (k -1, 1, 2). It can thus be seen that Terai's conjecture is true for almost all positive integers k with k equivalent to 3(mod 4).
引用
收藏
页码:10596 / 10601
页数:6
相关论文
共 50 条
  • [31] On two generalized Ramanujan-Nagell equations
    Fujita, Yasutsugu
    Le, Maohua
    Terai, Nobuhiro
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [32] Solutions of some generalized Ramanujan-Nagell equations
    Saradha, N.
    Srinivasan, Anitha
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (01): : 103 - 114
  • [34] On the number of solutions to the generalized Ramanujan-Nagell equation x2-D=4pn
    Fujita, Yasutsugu
    Le, Maohua
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (04): : 809 - 852
  • [35] Yet another generalization of the Ramanujan-Nagell equation
    Bennett, M. A.
    Filaseta, M.
    Trifonov, O.
    ACTA ARITHMETICA, 2008, 134 (03) : 211 - 217
  • [36] On the number of positive integer solutions (x, n) of the generalized Ramanujan-Nagell equation x2-2r = pn
    Wang, Tingting
    Jiang, Yingzhao
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 150 - 154
  • [37] RAMANUJAN-NAGELL CUBICS
    Bauer, Mark
    Bennett, Michael A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (02) : 385 - 412
  • [38] A polynomial-exponential equation related to the Ramanujan-Nagell equation
    Miyazaki, Takafumi
    RAMANUJAN JOURNAL, 2018, 45 (03): : 601 - 613
  • [39] On the number of solutions of the generalized Ramanujan-Nagell equation D1x2 + D2m = pn
    Hu, Yongzhong
    Le, Maohua
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (03): : 279 - 293
  • [40] On the number of solutions of the generalized Ramanujan-Nagell equation D1X2 + DM2=2N+2
    Li, Jianghua
    QUAESTIONES MATHEMATICAE, 2018, 41 (02) : 149 - 163