On the generalized Ramanujan-Nagell equation x2

被引:0
|
作者
Yu, Yahui [1 ]
Hu, Jiayuan [2 ]
机构
[1] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Henan, Peoples R China
[2] Hetao Coll, Dept Math & Comp, Bayannur 015000, Inner Mongolia, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 10期
关键词
polynomial-exponential diophantine equation; generalized Ramanujan-Nagell equation;
D O I
10.3934/math.2021615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a fixed positive integer with k > 1. In 2014, N. Terai [6] conjectured that the equation x(2) + (2k - 1)(y) = k(z) has only the positive integer solution (x, y, z) = (k - 1, 1, 2). This is still an unsolved problem as yet. For any positive integer n, let Q(n) denote the squarefree part of n. In this paper, using some elementary methods, we prove that if k equivalent to 3 (mod 4) and Q(k - 1) >= 2.11 log k, then the equation has only the positive integer solution (x, y, z) = (k -1, 1, 2). It can thus be seen that Terai's conjecture is true for almost all positive integers k with k equivalent to 3(mod 4).
引用
收藏
页码:10596 / 10601
页数:6
相关论文
共 50 条