Total Generalized Variation

被引:1121
|
作者
Bredies, Kristian [1 ]
Kunisch, Karl [1 ]
Pock, Thomas [2 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] Graz Univ Technol, Inst Comp Graph & Vis, A-8010 Graz, Austria
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2010年 / 3卷 / 03期
基金
奥地利科学基金会;
关键词
bounded variation; total generalized variation; tensor fields; regularization; image denoising; TOTAL VARIATION MINIMIZATION; VARIATION REGULARIZATION; ALGORITHM;
D O I
10.1137/090769521
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The novel concept of total generalized variation of a function u is introduced, and some of its essential properties are proved. Differently from the bounded variation seminorm, the new concept involves higher-order derivatives of u. Numerical examples illustrate the high quality of this functional as a regularization term for mathematical imaging problems. In particular this functional selectively regularizes on different regularity levels and, as a side effect, does not lead to a staircasing effect.
引用
收藏
页码:492 / 526
页数:35
相关论文
共 50 条
  • [1] Total Generalized Variation on a Tree
    Kuric, Muhamed
    Ahmetspahic, Jan
    Pock, Thomas
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (02): : 1040 - 1077
  • [2] Mesh Total Generalized Variation for Denoising
    Liu, Zheng
    Li, Yanlei
    Wang, Weina
    Liu, Ligang
    Chen, Renjie
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 4418 - 4433
  • [3] Directional total generalized variation regularization
    Rasmus Dalgas Kongskov
    Yiqiu Dong
    Kim Knudsen
    BIT Numerical Mathematics, 2019, 59 : 903 - 928
  • [4] Generalized Total Variation: Tying the Knots
    Department of Electrical and Computer Engineering, School of Engineering, New York University, Brooklyn
    NY
    11201, United States
    IEEE Signal Process Lett, 11 (2009-2013):
  • [5] Directional total generalized variation regularization
    Kongskov, Rasmus Dalgas
    Dong, Yiqiu
    Knudsen, Kim
    BIT NUMERICAL MATHEMATICS, 2019, 59 (04) : 903 - 928
  • [6] TOTAL GENERALIZED VARIATION FOR GRAPH SIGNALS
    Ono, Shunsuke
    Yamada, Isao
    Kumazawa, Itsuo
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 5456 - 5460
  • [7] Generalized Total Variation: Tying the Knots
    Selesnick, Ivan W.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 2009 - 2013
  • [8] Total Generalized Variation in Diffusion Tensor Imaging
    Valkonen, Tuomo
    Bredies, Kristian
    Knoll, Florian
    SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01): : 487 - 525
  • [9] Total Generalized Variation for Triangulated Surface Data
    Zhang, Huayan
    Peng, Zhichao
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (03)
  • [10] Compressive Imaging by Generalized Total Variation Minimization
    Yan, Jie
    Lu, Wu-Sheng
    2014 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2014, : 21 - 24