Directional total generalized variation regularization

被引:0
|
作者
Rasmus Dalgas Kongskov
Yiqiu Dong
Kim Knudsen
机构
[1] Technical University of Denmark,Department of Applied Mathematics and Computer Science
来源
BIT Numerical Mathematics | 2019年 / 59卷
关键词
Directional total generalized variation; Prior information; Regularization; Variational model; Primal-dual algorithm; Image restoration; 49M29; 65K10; 65J22; 90C47; 94A08;
D O I
暂无
中图分类号
学科分类号
摘要
In inverse problems, prior information and a priori-based regularization techniques play important roles. In this paper, we focus on image restoration problems, especially on restoring images whose texture mainly follow one direction. In order to incorporate the directional information, we propose a new directional total generalized variation (DTGV) functional, which is based on total generalized variation (TGV) by Bredies et al. After studying the mathematical properties of DTGV, we utilize it as regularizer and propose the L2-DTGV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {L}^2\hbox {-}\mathrm {DTGV}$$\end{document} variational model for solving image restoration problems. Due to the requirement of the directional information in DTGV, we give a direction estimation algorithm, and then apply a primal-dual algorithm to solve the minimization problem. Experimental results show the effectiveness of the proposed method for restoring the directional images. In comparison with isotropic regularizers like total variation and TGV, the improvement of texture preservation and noise removal is significant.
引用
收藏
页码:903 / 928
页数:25
相关论文
共 50 条
  • [1] Directional total generalized variation regularization
    Kongskov, Rasmus Dalgas
    Dong, Yiqiu
    Knudsen, Kim
    BIT NUMERICAL MATHEMATICS, 2019, 59 (04) : 903 - 928
  • [2] Directional Total Generalized Variation Regularization for Impulse Noise Removal
    Kongskov, Rasmus Dalgas
    Dong, Yiqiu
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2017, 2017, 10302 : 221 - 231
  • [3] Second-Order Directional Total Generalized Variation Regularization for Image Super-resolution
    Wu Z.-H.
    Sun M.-J.
    Gu Z.-S.
    Fan M.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2017, 45 (11): : 2625 - 2632
  • [4] Regularization of linear inverse problems with total generalized variation
    Bredies, Kristian
    Holler, Martin
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (06): : 871 - 913
  • [5] Generalized Higher Degree Total Variation (HDTV) Regularization
    Hu, Yue
    Ongie, Greg
    Ramani, Sathish
    Jacob, Mathews
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) : 2423 - 2435
  • [6] Multiband image fusion using total generalized variation regularization
    Liang J.
    Pan H.
    Ya Y.
    Jing Z.
    Qiao L.
    Aerospace Systems, 2021, 4 (3) : 261 - 267
  • [7] TOTAL GENERALIZED VARIATION REGULARIZATION IN DATA ASSIMILATION FOR BURGERS' EQUATION
    Carlos De los Reyes, Juan
    Loayza-Romero, Estefania
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (04) : 755 - 786
  • [8] Second-Order Total Generalized Variation Regularization for Pansharpening
    Khademi, Ghassem
    Ghassemian, Hassan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] USING GENERALIZED CROSS VALIDATION TO SELECT REGULARIZATION PARAMETER FOR TOTAL VARIATION REGULARIZATION PROBLEMS
    Wen, You-Wei
    Chan, Raymond Honfu
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (05) : 1103 - 1120
  • [10] Photoacoustic microscopy image resolution enhancement via directional total variation regularization
    伍政华
    孙明健
    王强
    刘婷
    冯乃章
    刘劼
    沈毅
    ChineseOpticsLetters, 2014, 12 (12) : 109 - 113