Interpretation Mueller matrix images based on polar decomposition and statistical discriminators to distinguish skin cancer

被引:1
|
作者
Chung, JR [1 ]
DeLaughter, AH [1 ]
Baba, JS [1 ]
Spiegelman, CH [1 ]
Amoss, MS [1 ]
Coté, GL [1 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
来源
LASER-TISSUE INTERACTION XIV | 2003年 / 4961卷
关键词
Mueller matrix; polarimetry; backscattering; skin cancer; polar decomposition;
D O I
10.1117/12.477687
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The Mueller matrix describes all the polarizing properties of a sample, and therefore the optical differences between cancerous and non-cancerous tissue should be present within the matrix elements. We present in this paper the Mueller matrices of three types of tissue; normal, benign mole, and malignant melanoma on a Sinclair swine model. Feature extraction is done on the Mueller matrix elements resulting An retardance images, diattenuation images, and depolarization images. These images are analyzed in an attempt to determine the important factors for the identification of cancerous lesions from their benign counterparts. In addition, the extracted features are analyzed using statistical processing to develop an accurate classification scheme and to identify the importance of each parameter in the determination of cancerous verses non-cancerous tissue.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 50 条
  • [41] Characterization of Mueller matrix elements for classifying human skin cancer utilizing random forest algorithm
    Ngan Thanh Luu
    Thanh-Hai Le
    Quoc-Hung Phan
    Thi-Thu-Hien Pham
    JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (07)
  • [42] GA-based affine PPM using matrix polar decomposition
    Ezoji, Mehdi
    Faez, Karim
    Kanan, Hamidreza Rashidy
    Mozaffari, Saeed
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (07): : 2053 - 2060
  • [43] Mueller Matrix Decomposition for Rough Surface Materials Based on Laser Light Scattering and the Optimal Method
    Li, H-Z.
    Zhao, Z-M.
    Li, L.
    Zhou, X-J.
    Ren, K.
    Zheng, D-L.
    LASERS IN ENGINEERING, 2023, 54 (4-6) : 357 - 375
  • [44] Classification of human skin cancer using Stokes-Mueller decomposition method and artificial intelligence models
    Thanh-Ngan Luu
    Quoc-Hung Phan
    Thanh-Hai Le
    Thi-Thu-Hien Pham
    OPTIK, 2022, 249
  • [45] Mueller polarimetric microscopic images analysis based classification of breast cancer cells
    Xia, Longyu
    Yao, Yue
    Dong, Yang
    Wang, Mingzhe
    Ma, Hui
    Ma, Lan
    OPTICS COMMUNICATIONS, 2020, 475
  • [46] Polarization-based underwater image enhancement using the neural network of Mueller matrix images
    Cheng, Haoyuan
    Chu, Jinkui
    Chen, Yongtai
    Liu, Jianying
    Gong, Wenzhe
    JOURNAL OF MODERN OPTICS, 2022, 69 (05) : 264 - 271
  • [47] A quantitative technique to analyze and evaluate microstructures of skin hair follicles based on mueller matrix polarimetry
    Shi, Yixuan
    Sun, Yanan
    Huang, Rongrong
    Zhou, Yong
    Zhai, Haoyu
    Fan, Zhipeng
    Ou, Zechao
    Huang, Pengsheng
    He, Honghui
    He, Chao
    Wang, Yi
    Ma, Hui
    FRONTIERS IN PHYSICS, 2022, 10
  • [48] A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter
    Ramella-Roman, Jessica C.
    Duncan, Don D.
    ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC SYSTEMS IV, 2006, 6080
  • [49] A four-component decomposition of POLSAR images based on the coherency matrix
    Yamaguchi, Yoshio
    Yajima, Yuki
    Yamada, Hiroyoshi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (03) : 292 - 296
  • [50] Label-free discrimination of lung cancer cells through mueller matrix decomposition of diffuse reflectance imaging
    Shrestha, Suman
    Deshpanda, Aditi
    Farrahi, Tannaz
    Cambria, Thomas
    Quang, Tri
    Majeski, Joseph
    Na, Ying
    Zervakis, Michalis
    Livanos, George
    Giakos, George C.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 40 : 505 - 518