Weak collapse in the nonlinear Schrodinger equation

被引:5
|
作者
Ovchinnikov, YN [1 ]
机构
[1] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia
关键词
03.65.Ge; 02.30.Jr;
D O I
10.1134/1.568044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that there exists a three-parameter family of exact solutions of the nonlinear Schrodinger equation that lead to weak collapse. (C) 1999 American Institute of Physics. [S0021-3640(99)01005-1].
引用
收藏
页码:418 / 422
页数:5
相关论文
共 50 条
  • [31] NONLINEAR SCHRODINGER EQUATION
    BAILLON, JB
    CAZENAVE, T
    FIGUEIRA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 869 - 872
  • [32] NONLINEAR SCHRODINGER EQUATION
    BIROLI, M
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 854 - 859
  • [33] Nonlinear Schrodinger-Helmholtz equation as numerical regularization of the nonlinear Schrodinger equation
    Cao, Yanping
    Musslimani, Ziad H.
    Titi, Edriss S.
    NONLINEARITY, 2008, 21 (05) : 879 - 898
  • [34] Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation
    de Bouard, Anne
    Debussche, Arnaud
    APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 54 (03): : 369 - 399
  • [35] On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrodinger Equation
    Kierkels, A. H. M.
    Velazquez, J. J. L.
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (03) : 668 - 712
  • [36] Various optical soliton for a weak fractional nonlinear Schrodinger equation with parabolic law
    Rizvi, S. T. R.
    Seadawy, Aly R.
    Younis, M.
    Iqbal, S.
    Althobaiti, S.
    El-Shehawi, Ahmed M.
    RESULTS IN PHYSICS, 2021, 23
  • [37] Weak and Strong Order of Convergence of a Semidiscrete Scheme for the Stochastic Nonlinear Schrodinger Equation
    Anne de Bouard
    Arnaud Debussche
    Applied Mathematics and Optimization, 2006, 54 : 369 - 399
  • [38] Effect of weak discreteness on two-soliton collisions in nonlinear Schrodinger equation
    Semagin, DA
    Dmitriev, SV
    Shigenari, T
    Kivshar, YS
    Sukhorukov, AA
    PHYSICA B-CONDENSED MATTER, 2002, 316 : 136 - 138
  • [39] The complexity of wave propagation of the nonlinear Schrodinger equation with weak periodic external field
    Hu, Yanxia
    Guan, Keying
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (02) : 420 - 429
  • [40] THE STABILITY, COLLAPSE, DECAY AND SELF-TRAPPING OF THE SOLUTIONS OF ONE SCHRODINGER NONLINEAR EQUATION
    NASIBOV, SM
    DOKLADY AKADEMII NAUK SSSR, 1985, 285 (04): : 807 - 811