Fractal geometry of rocks

被引:139
|
作者
Radlinski, AP
Radlinska, EZ
Agamalian, M
Wignall, GD
Lindner, P
Randl, OG
机构
[1] Australian Geol Survey Org, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Dept Appl Math, Canberra, ACT 0200, Australia
[3] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA
[4] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
关键词
D O I
10.1103/PhysRevLett.82.3078
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analysis of small- and ultra-small-angle neutron scattering data for sedimentary rocks shows that the pore-rock fabric interface is a surface fractal (D-s = 2.82) over 3 orders of magnitude of the length scale and 10 orders of magnitude in intensity. The fractal dimension and scatterer size obtained from scanning electron microscopy image processing ate consistent with neutron scattering data. [S0031-9007(99)08945-0].
引用
收藏
页码:3078 / 3081
页数:4
相关论文
共 50 条
  • [31] FRACTAL GEOMETRY IN SOLIDS AND STRUCTURES
    PANAGIOTOPOULOS, PD
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1992, 29 (17) : 2159 - 2175
  • [32] MEASURING THE FRACTAL GEOMETRY OF LANDSCAPES
    MILNE, BT
    APPLIED MATHEMATICS AND COMPUTATION, 1988, 27 (01) : 67 - 79
  • [33] FRACTAL GEOMETRY OF COLLISION CASCADES
    ROSSI, F
    PARKIN, DM
    NASTASI, M
    JOURNAL OF MATERIALS RESEARCH, 1989, 4 (01) : 137 - 143
  • [34] FRACTAL GEOMETRY AND ECOLOGY OF LICHENS
    De Marchi, Angelo
    Cassi, Davide
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1993, 1 (03) : 346 - 353
  • [35] FRACTAL GEOMETRY IN CHEMISTRY - AN OVERVIEW
    AVNIR, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 39 - PHYS
  • [36] Computational fractal geometry with WFA
    Karel Culik II
    Jarkko Kari
    Acta Informatica, 1997, 34 : 151 - 166
  • [37] Fractal geometry and dynamical bifurcations
    Moreira, Carlos Gustavo T. de A.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 647 - 659
  • [38] Fractal geometry of sedimentary rocks: simulation in 3-D using a Relaxed Bidisperse Ballistic Deposition Model
    Giri, Abhra
    Tarafdar, Sujata
    Gouze, Philippe
    Dutta, Tapati
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 192 (03) : 1059 - 1069
  • [39] Fractal geometry and the foundations of physics
    Nottale, L
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 57 - 59
  • [40] Computational fractal geometry with WFA
    Culik, K
    Kari, J
    ACTA INFORMATICA, 1997, 34 (02) : 151 - 166