Synthesis of nanophase tungsten carbide by electrical discharge machining

被引:40
|
作者
Lin, MH [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Mech Engn, Kaohsiung 80782, Taiwan
关键词
tungsten carbide; nano-powder; electrical discharge machining;
D O I
10.1016/j.ceramint.2004.12.004
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tungsten carbide nanopowders were synthesized successfully by electric discharge machining followed by annealing under a nitrogen atmosphere. The tungsten workpieces were initially melted and evaporated on the working surface during the electric discharge machining process, and then the tungsten powders were reacted with the carbon electrode and the working medium of kerosene to form the nanocrystalline WC1-x, powders. The powders produced were characterized by XRD, SEM, and TEM. When annealing the powders under an N-2 atmosphere, the cubicphases of WC1-x gradually changed to hexagonal W2C and then were transformed fully to nanocrystalline hexagonal WC at 1200 degrees C, with the nanocrystalline tungsten carbide encapsulated in a carbon shell. On the other hand, under an H-2 atmosphere, the WC1-x phase changed via a WC1-x phase to reduced powders of pure tungsten at 1000 degrees C or were reduced directly from WC1-x, to elemental W. (c) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:1109 / 1115
页数:7
相关论文
共 50 条
  • [31] Microstructuring of non-conductive silicon carbide by electrical discharge machining
    Florian Zeller
    Tim Hösel
    Claas Müller
    Holger Reinecke
    Microsystem Technologies, 2014, 20 : 1875 - 1880
  • [32] Modelling the manufacturing parameters in electrical discharge machining of siliconized silicon carbide
    Puertas, I
    Perez, CJL
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2003, 217 (06) : 791 - 803
  • [33] Optimization of wire electrical discharge machining process parameters for cutting tungsten
    Rong Tai Yang
    Chorng Jyh Tzeng
    Yung Kuang Yang
    Ming Hua Hsieh
    The International Journal of Advanced Manufacturing Technology, 2012, 60 : 135 - 147
  • [34] Optimization of wire electrical discharge machining process parameters for cutting tungsten
    Yang, Rong Tai
    Tzeng, Chorng Jyh
    Yang, Yung Kuang
    Hsieh, Ming Hua
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 60 (1-4): : 135 - 147
  • [35] Micro electrical discharge drilling of tungsten carbide using deionized water
    Song, Ki Young
    Chung, Do Kwan
    Park, Min Soo
    Chu, Chong Nam
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (04)
  • [36] Micro Electrochemical Machining of Tungsten Carbide
    Choi, Se Hwan
    Shin, Hong Shik
    Chung, Do Kwan
    Chu, Chong Nam
    Kim, Bo Hyun
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 3696 - 3704
  • [37] Synthesis of ultrafine cubic tungsten carbide in a discharge plasma jet
    Pak, Alexander
    Sivkov, Alexander
    Shanenkov, Ivan
    Rahmatullin, Ilias
    Shatrova, Kseniya
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 48 : 51 - 55
  • [38] Synthesis of tungsten carbide nanopowder via submerged discharge method
    Burakov, Viktor S.
    Butsen, Andrey V.
    Brueser, Volker
    Harnisch, Falk
    Misakov, Pulat Y.
    Nevar, Elena A.
    Rosenbaum, Miriam
    Savastenko, Natalie A.
    Tarasenko, Nikolai V.
    JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (05) : 881 - 886
  • [39] Synthesis of tungsten carbide nanopowder via submerged discharge method
    Viktor S. Burakov
    Andrey V. Butsen
    Volker Brüser
    Falk Harnisch
    Pulat Y. Misakov
    Elena A. Nevar
    Miriam Rosenbaum
    Natalie A. Savastenko
    Nikolai V. Tarasenko
    Journal of Nanoparticle Research, 2008, 10 : 881 - 886
  • [40] Picosecond laser machining of tungsten carbide
    Marimuthu, Sundar
    Dunleavey, Justin
    Smith, Bethan
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 92