Non-parametric Change Point Detection for Spike Trains

被引:0
|
作者
Mosqueiro, Thiago [1 ]
Strube-Bloss, Martin [2 ]
Tuma, Rafael [3 ]
Pinto, Reynaldo [3 ]
Smith, Brian H. [4 ]
Huerta, Ramon [1 ]
机构
[1] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
[2] Univ Wurzburg, Bioctr, Theodor Boveri Inst Biosci, Wurzburg, Germany
[3] Univ Sao Paulo, Inst Phys Sao Carlos, BR-05508 Sao Paulo, Brazil
[4] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
来源
2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS) | 2016年
关键词
Non-parametric; Olfaction; Electric fish; Communication; ELECTRIC FISH;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two techniques of non-parametric change point detection are applied to two different neuroscience datasets. In the first dataset, we show how the multivariate non-parametric change point detection can precisely estimate reaction times to input stimulation in the olfactory system using joint information of spike trains from several neurons. In the second example, we propose to analyze communication and sequence coding using change point formalism as a time segmentation of homogeneous pieces of information, revealing cues to elucidate directionality of the communication in electric fish. We are also sharing our software implementation Chapolins at GitHub.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A NON-PARAMETRIC APPROACH TO AUTOMATIC CHANGE DETECTION IN MRI IMAGES OF THE BRAIN
    Seo, Hae Jong
    Milanfar, Peyman
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 245 - 248
  • [22] Non-parametric Quickest Change Detection for Large Scale Random Matrices
    Banerjee, Taposh
    Firouzi, Hamed
    Hero, Alfred O., III
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 146 - 150
  • [23] Non-parametric Bayesian modeling of hazard rate with a change point for nanoelectronic devices
    Yang, Chia-Han
    Yuan, Tao
    Kuo, Way
    Kuo, Yue
    IIE TRANSACTIONS, 2012, 44 (07) : 496 - 506
  • [24] Non-Parametric Change-Point Estimation using String Matching Algorithms
    Oliver Johnson
    Dino Sejdinovic
    James Cruise
    Robert Piechocki
    Ayalvadi Ganesh
    Methodology and Computing in Applied Probability, 2014, 16 : 987 - 1008
  • [25] Non-Parametric Change-Point Estimation using String Matching Algorithms
    Johnson, Oliver
    Sejdinovic, Dino
    Cruise, James
    Piechocki, Robert
    Ganesh, Ayalvadi
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (04) : 987 - 1008
  • [26] A Non-Parametric Approach for Change-Point Detection of Multi-Parameters in Time-Series Data
    Hu, Y. M.
    Yang, C. X.
    Liang, Z. M.
    Luo, X. Y.
    Huang, Y. X.
    Tang, C.
    JOURNAL OF ENVIRONMENTAL INFORMATICS, 2023, 42 (01) : 65 - 74
  • [27] Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods
    Cabrieto, Jedelyn
    Tuerlinckx, Francis
    Kuppens, Peter
    Grassmann, Mariel
    Ceulemans, Eva
    BEHAVIOR RESEARCH METHODS, 2017, 49 (03) : 988 - 1005
  • [28] Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods
    Jedelyn Cabrieto
    Francis Tuerlinckx
    Peter Kuppens
    Mariel Grassmann
    Eva Ceulemans
    Behavior Research Methods, 2017, 49 : 988 - 1005
  • [29] Detection threshold for non-parametric estimation
    Abdourrahmane M. Atto
    Dominique Pastor
    Gregoire Mercier
    Signal, Image and Video Processing, 2008, 2 : 207 - 223
  • [30] Non-parametric Overlapping Community Detection
    Laitonjam, Nishma
    Hurley, Neil
    BAYESIAN STATISTICS AND NEW GENERATIONS, BAYSM 2018, 2019, 296 : 23 - 34