Non-parametric Change Point Detection for Spike Trains

被引:0
|
作者
Mosqueiro, Thiago [1 ]
Strube-Bloss, Martin [2 ]
Tuma, Rafael [3 ]
Pinto, Reynaldo [3 ]
Smith, Brian H. [4 ]
Huerta, Ramon [1 ]
机构
[1] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
[2] Univ Wurzburg, Bioctr, Theodor Boveri Inst Biosci, Wurzburg, Germany
[3] Univ Sao Paulo, Inst Phys Sao Carlos, BR-05508 Sao Paulo, Brazil
[4] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
来源
2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS) | 2016年
关键词
Non-parametric; Olfaction; Electric fish; Communication; ELECTRIC FISH;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two techniques of non-parametric change point detection are applied to two different neuroscience datasets. In the first dataset, we show how the multivariate non-parametric change point detection can precisely estimate reaction times to input stimulation in the olfactory system using joint information of spike trains from several neurons. In the second example, we propose to analyze communication and sequence coding using change point formalism as a time segmentation of homogeneous pieces of information, revealing cues to elucidate directionality of the communication in electric fish. We are also sharing our software implementation Chapolins at GitHub.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] NON-PARAMETRIC BAYESIAN INFERENCE FOR CHANGE POINT DETECTION IN NEURAL SPIKE TRAINS
    Alt, Bastian
    Messer, Michael
    Roeper, Jochen
    Schneider, Gaby
    Koeppl, Heinz
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 258 - 262
  • [2] Change-point detection with non-parametric regression
    Horváth, L
    Kokoszka, P
    STATISTICS, 2002, 36 (01) : 9 - 31
  • [3] Unsupervised non-parametric change point detection in electrocardiography
    Shvetsov, Nikolay
    Buzun, Nazar
    Dylov, Dmitry V.
    PROCEEDINGS OF THE 32TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, SSDBM 2020, 2020,
  • [4] Non-Parametric Change-Point Method for Differential Gene Expression Detection
    Wang, Yao
    Wu, Chunguo
    Ji, Zhaohua
    Wang, Binghong
    Liang, Yanchun
    PLOS ONE, 2011, 6 (05):
  • [5] Non-parametric detection and estimation of structural change
    Kristensen, Dennis
    ECONOMETRICS JOURNAL, 2012, 15 (03): : 420 - 461
  • [6] A non-parametric approach to automatic change detection
    Bruzzone, L
    Cossu, R
    Prieto, DF
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VI, 2001, 4170 : 133 - 140
  • [7] Change point detection and inference in multivariate non-parametric models under mixing conditions
    Padilla, Carlos Misael Madrid
    Xu, Haotian
    Wang, Daren
    Padilla, Oscar Hernan Madrid
    Yu, Yi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Progress in non-parametric change point detection of gravitational wave bursts:: the MULTIKSCD algorithm
    Mohanty, SD
    Jiménez, A
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (18) : S1233 - S1241
  • [9] Non-Parametric Quickest Mean-Change Detection
    Liang, Yuchen
    Veeravalli, Venugopal V.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (12) : 8040 - 8052
  • [10] Two non-parametric tests for change-point problems
    Grégoire, G
    Hamrouni, Z
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (1-2) : 87 - 112