The oxidizing effect of humidity on WO3 based sensors

被引:100
|
作者
Staerz, A. [1 ,2 ]
Berthold, C. [3 ]
Russ, T. [1 ,2 ]
Wicker, S. [1 ,2 ]
Weimar, U. [1 ,2 ]
Barsan, N. [1 ,2 ]
机构
[1] Univ Tubingen, IPTC, Morgenstelle 15, D-72076 Tubingen, Germany
[2] Univ Tubingen, Ctr Light Matter Interact Sensors & Analyt LISA, Morgenstelle 15, D-72076 Tubingen, Germany
[3] Univ Tubingen, Angew Mineral, Wilhelmstr 56, D-72076 Tubingen, Germany
关键词
Operand DRIFTS; Gas sensing with WO3; Detection of CO and NO2; Effect of humidity; TUNGSTEN-OXIDE; SENSING PROPERTIES; GAS; MECHANISM; NO; IR;
D O I
10.1016/j.snb.2016.06.072
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Semiconducting metal oxide based gas sensors are used in a wide spectrum of fields, ranging from the detection of hazardous gases within the environment to monitoring air quality. WO3 is the second, after SnO2, most commonly used semiconducting metal oxide in commercial gas sensors. Despite its frequent application, the surface reactions responsible for sensing are largely unknown. Here, for the first time, a mechanism for the surface reaction between WO3 and humidity can be concluded from experimental results. DC resistance measurements and operando diffuse reflectance infrared Fourier transform spectroscopy show an oxidation of the WO3 lattice during humidity exposure. The filling of oxygen vacancies by water explains the effects atmospheric humidity has on WO3 based sensors, specifically the increase in resistance, the higher sensor signals to CO and the lower sensor signals to NO2. These findings are a basis for understanding how sensing occurs with WO3 based sensors. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 58
页数:5
相关论文
共 50 条
  • [21] The effect of different surface morphologies on WO3 and WO3-Au gas-sensors performance
    Hamed Najafi-Ashtiani
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 12224 - 12233
  • [22] The effect of different surface morphologies on WO3 and WO3-Au gas-sensors performance
    Najafi-Ashtiani, Hamed
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (13) : 12224 - 12233
  • [23] Electrical and humidity sensing properties of polyaniline/WO3 composites
    Parvatikar, N
    Jain, S
    Khasim, S
    Revansiddappa, M
    Bhoraskar, SV
    Prasad, MCNA
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (02): : 599 - 603
  • [24] Ag Doped WO3 Nanomaterials as Relative Humidity Sensor
    Pandey, N. K.
    Tiwari, Karunesh
    Roy, Akash
    IEEE SENSORS JOURNAL, 2011, 11 (11) : 2911 - 2918
  • [25] Properties and gasochromic study of WO3 film sensors
    Yang, X. H.
    Wang, X. Q.
    Ma, Y.
    Kang, Q.
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2479 - 2482
  • [26] Hydrogen sensors based on Pt-loaded WO3 sensing layers
    Bose, R. Jolly
    Illyaskutty, Navas
    Tan, K. S.
    Rawat, R. S.
    Matham, Murukeshan Vadakke
    Kohler, Heinz
    Pillai, V. P. Mahadevan
    EPL, 2016, 114 (06)
  • [27] Platinum activated WO3 optical hydrogen sensors
    Coban, Omer
    Gur, Emre
    Tuzemen, Sebahattin
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 6913 - 6915
  • [28] WO3 thick-film gas sensors
    Tomchenko, AA
    Khatko, VV
    Emelianov, IL
    SENSORS AND ACTUATORS B-CHEMICAL, 1998, 46 (01): : 8 - 14
  • [29] Study of WO3 based H2S gas sensors
    Wu, Zhengyuan
    Chen, Tao
    Qiu, Sichou
    Wu, Zhenghua
    Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 27 (01): : 41 - 43
  • [30] Room temperature hydrogen sensors based on metal decorated WO3 nanowires
    Kukkola, Jarmo
    Mohl, Melinda
    Leino, Anne-Riikka
    Maklin, Jani
    Halonen, Niina
    Shchukarev, Andrey
    Konya, Zoltan
    Jantunen, Heli
    Kordas, Krisztian
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 186 : 90 - 95