Multiplexing volume holographic gratings for a spectral-spatial imaging system

被引:4
|
作者
Luo, Yuan [1 ,2 ]
Gelsinger, Paul J. [2 ]
Barton, Jennifer K. [1 ,2 ,3 ]
Barbastathis, George [4 ]
Kostuk, Raymond K. [1 ,2 ]
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
[3] Univ Arizona, Div Biomed Engn, Tucson, AZ 85721 USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
holographic; grating; multiplexing; bragg filter; imaging;
D O I
10.1117/12.763926
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiplexed gratings can be used in an imaging system to project depth sections of a tested object onto different surface locations of a camera. This technique is based on volume holographic Bragg filters used in conjunction with conventional optical imaging components to form a volume holographic imaging system (VHIS). Due to the high angular selectivity and high wavelength selectivity of the system, the VHIS can be used to provide spectral-spatial information of the object that is being observed, and eliminate the need for mechanical scanning. Multiple sections of the object can be viewed by using angle multiplexed holographic elements formed in a volume holographic material. To achieve the highly selective characteristic of a holographic filter, 2mm thick samples of phenanthrenequinone-doped methyl methacrylate (PQ-PMMA) is used as the holographic recording materials. Rigorous coupled wave models are used to theoretically predict the performance of the gratings. Results from both modeling and experiments are presented.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Momentum accelerated unfolding network with spectral-spatial prior for computational spectral imaging
    Cai, Zeyu
    Li, Chunlu
    Yu, Yi
    Jin, Chengqian
    Da, Feipeng
    APPLIED SOFT COMPUTING, 2024, 154
  • [32] A hyperspectral retinal imaging system: A spectral-spatial comparison of clinically significant macular edema (CSME)
    Zamora, G
    Truitt, PW
    Nemeth, SC
    Russell, SR
    Durukan, A
    Soliz, P
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U191 - U191
  • [33] Hyper-spectral imaging with volume holographic lenses
    Sun, WY
    Tian, KH
    Barbastathis, G
    2005 CONFERENCE ON LASERS & ELECTRO-OPTICS (CLEO), VOLS 1-3, 2005, : 2336 - 2338
  • [34] FIBER-OPTIC WAVELENGTH-DIVISION MULTIPLEXING AND DEMULTIPLEXING USING VOLUME HOLOGRAPHIC GRATINGS
    MOSLEHI, B
    HARVEY, P
    NG, J
    JANNSON, T
    OPTICS LETTERS, 1989, 14 (19) : 1088 - 1090
  • [35] Modeling and design of planar slanted volume holographic gratings for wavelength-division-multiplexing applications
    Liu, J
    Chen, RT
    Davies, BM
    Li, LF
    APPLIED OPTICS, 1999, 38 (34) : 6981 - 6986
  • [36] Simulations and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems
    Luo, Yuan
    Castro, Jose
    Barton, Jennifer K.
    Kostuk, Raymond K.
    Barbastathis, George
    OPTICS EXPRESS, 2010, 18 (18): : 19273 - 19285
  • [37] Effect of aberrations in a holographic system on reflecting volume Bragg gratings
    SeGall, Marc
    Ott, Daniel
    Divliansky, Ivan
    Glebov, Leonid B.
    APPLIED OPTICS, 2013, 52 (32) : 7826 - 7831
  • [38] Tunable gratings: Imaging the universe in 3-D with volume-phase holographic gratings
    Barden, SC
    Williams, JB
    Arns, JA
    Colburn, WS
    IMAGING THE UNIVERSE IN THREE DIMENSIONS: ASTROPHYSICS WITH ADVANCED MULTI-WAVELENGTH IMAGING DEVICES, 2000, 195 : 552 - 563
  • [39] SPECTRAL-SPATIAL DIFFUSION OF PHONONS
    HAPPEK, U
    HOLSTEIN, T
    RENK, KF
    JOURNAL DE PHYSIQUE, 1985, 46 (C-7): : 229 - 233
  • [40] A Spectral-spatial Cooperative Noise-evaluation Method for Hyperspectral Imaging
    Zhou, Bing
    Li, Bingxuan
    He, Xuan
    Liu, Hexiong
    CURRENT OPTICS AND PHOTONICS, 2020, 4 (06) : 530 - 539