Circle detection on images using learning automata

被引:14
|
作者
Cuevas, E. [1 ]
Wario, F. [1 ]
Zaldivar, D. [1 ]
Perez-Cisneros, M. [1 ]
机构
[1] Univ Guadalajara, Dept Ciencias Computac, CUCEI, Guadalajara 44430, Jalisco, Mexico
关键词
HOUGH TRANSFORM; ALGORITHM; OPTIMIZATION; ELLIPSE;
D O I
10.1049/iet-cvi.2010.0226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Circle detection over digital images has received considerable attention from the computer vision community over the last few years devoting a tremendous amount of research seeking for an optimal detector. This article presents an algorithm for the automatic detection of circular shapes from complicated and noisy images with no consideration of conventional Hough transform (HT) principles. The proposed algorithm is based on Learning Automata (LA) which is a probabilistic optimisation method that explores an unknown random environment by progressively improving the performance via a reinforcement signal (objective function). The approach uses the encoding of three non-collinear points as a candidate circle over the edge image. A reinforcement signal (matching function) indicates if such candidate circles are actually present in the edge map. Guided by the values of such reinforcement signal, the probability set of the encoded candidate circles is modified through the LA algorithm so that they can fit to the actual circles on the edge map. Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [31] Detection and Classification of Hysteroscopic Images Using Deep Learning
    Raimondo, Diego
    Raffone, Antonio
    Salucci, Paolo
    Raimondo, Ivano
    Capobianco, Giampiero
    Galatolo, Federico Andrea
    Cimino, Mario Giovanni Cosimo Antonio
    Travaglino, Antonio
    Maletta, Manuela
    Ferla, Stefano
    Virgilio, Agnese
    Neola, Daniele
    Casadio, Paolo
    Seracchioli, Renato
    CANCERS, 2024, 16 (07)
  • [32] Human Detection in Thermal Images Using Transfer Learning
    Kang, Jeon-Seong
    Park, Beom-Joon
    Chung, Hyun-Joon
    INTELLIGENT AUTONOMOUS SYSTEMS 18, VOL 2, IAS18-2023, 2024, 794 : 199 - 205
  • [33] AVALANCHE DETECTION IN SAR IMAGES USING DEEP LEARNING
    Waldeland, Anders U.
    Reksten, Jarle Hamar
    Salberg, Arnt-Borre
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2386 - 2389
  • [34] DETECTION OF MASSES IN MAMMOGRAPHIC IMAGES USING DEEP LEARNING
    Wang, Y.
    Yin, M. M.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2017, 121 : 38 - 38
  • [35] Machine learning for glaucoma detection using fundus images
    Elmoufidi A.
    Hossi A.E.
    Nachaoui M.
    Research on Biomedical Engineering, 2023, 39 (04) : 819 - 831
  • [36] Edge detection of images based on fuzzy cellular automata
    Zhang, Ke
    Li, Zhong
    Zhao, Xiao-Ou
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 2, PROCEEDINGS, 2007, : 289 - +
  • [37] Evolved Cellular Automata for Edge Detection in Grayscale Images
    Enescu, Alina
    Andreica, Anca
    Diosan, Laura
    2019 21ST INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2019), 2020, : 326 - 332
  • [38] Cellular edge detection: Combining cellular automata and cellular learning automata
    Mofrad, Mohammad Hasanzadeh
    Sadeghi, Sana
    Rezvanian, Alireza
    Meybodi, Mohammad Reza
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2015, 69 (09) : 1282 - 1290
  • [39] Encrypting Digital Images Using Cellular Automata
    Martin del Rey, A.
    Rodriguez Sanchez, G.
    de la Villa Cuenca, A.
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 78 - 88
  • [40] Lung Cancer Diagnosis Using CT-Scan Images Based on Cellular Learning Automata
    Hadavi, Nooshin
    Nordin, Md Jan
    Shojaeipour, Ali
    2014 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2014,