Circle detection on images using learning automata

被引:14
|
作者
Cuevas, E. [1 ]
Wario, F. [1 ]
Zaldivar, D. [1 ]
Perez-Cisneros, M. [1 ]
机构
[1] Univ Guadalajara, Dept Ciencias Computac, CUCEI, Guadalajara 44430, Jalisco, Mexico
关键词
HOUGH TRANSFORM; ALGORITHM; OPTIMIZATION; ELLIPSE;
D O I
10.1049/iet-cvi.2010.0226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Circle detection over digital images has received considerable attention from the computer vision community over the last few years devoting a tremendous amount of research seeking for an optimal detector. This article presents an algorithm for the automatic detection of circular shapes from complicated and noisy images with no consideration of conventional Hough transform (HT) principles. The proposed algorithm is based on Learning Automata (LA) which is a probabilistic optimisation method that explores an unknown random environment by progressively improving the performance via a reinforcement signal (objective function). The approach uses the encoding of three non-collinear points as a candidate circle over the edge image. A reinforcement signal (matching function) indicates if such candidate circles are actually present in the edge map. Guided by the values of such reinforcement signal, the probability set of the encoded candidate circles is modified through the LA algorithm so that they can fit to the actual circles on the edge map. Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [1] Fast algorithm for multiple-circle detection on images using learning automata
    Cuevas, E.
    Wario, F.
    Osuna-Enciso, V.
    Zaldivar, D.
    Perez-Cisneros, M.
    IET IMAGE PROCESSING, 2012, 6 (08) : 1124 - 1135
  • [2] Circle detection in images: A deep learning approach
    Ercan, M. Fikret
    Qiankun, Allen Liu
    Sakai, Simon Seiya
    Miyazaki, Takashi
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [3] Circle detection on images using genetic algorithms
    Ayala-Ramirez, V
    Garcia-Capulin, CH
    Perez-Garcia, A
    Sanchez-Yanez, RE
    PATTERN RECOGNITION LETTERS, 2006, 27 (06) : 652 - 657
  • [4] Fuzzy cellular learning automata for lesion detection in retina images
    Nejad, Hadi Chahkandi
    Azadbakht, Bakhtiar
    Adenihvand, Karim
    Mohammadi, Mohammad
    Mirzamohammad, Mahsa
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (05) : 2297 - 2303
  • [5] Scene Text Detection on Images Using Cellular Automata
    Zagoris, Konstantinos
    Pratikakis, Ioannis
    CELLULAR AUTOMATA, ACRI 2012, 2012, 7495 : 514 - 523
  • [6] Automatic multi-circle detection on images using the teaching learning based optimisation algorithm
    Lopez, Alan
    Cuevas, Francisco J.
    IET COMPUTER VISION, 2018, 12 (08) : 1188 - 1199
  • [7] Automatic circle detection on images using the Teaching Learning Based Optimization algorithm and gradient analysis
    Lopez-Martinez, A.
    Cuevas, F. J.
    APPLIED INTELLIGENCE, 2019, 49 (05) : 2001 - 2016
  • [8] Automatic circle detection on images using the Teaching Learning Based Optimization algorithm and gradient analysis
    A. Lopez-Martinez
    F. J. Cuevas
    Applied Intelligence, 2019, 49 : 2001 - 2016
  • [9] Melanoma Detection in Dermoscopic Images Using a Cellular Automata Classifier
    Luna-Benoso, Benjamin
    Martinez-Perales, Jose Cruz
    Cortes-Galicia, Jorge
    Flores-Carapia, Rolando
    Silva-Garcia, Victor Manuel
    COMPUTERS, 2022, 11 (01)
  • [10] Text Detection on Natural Images Using Mnemonic Cellular Automata
    Zagoris, Konstantinos
    Pratikakis, Ioannis
    JOURNAL OF CELLULAR AUTOMATA, 2014, 9 (2-3) : 183 - 194