Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

被引:112
|
作者
Kong, X. Q. [1 ]
Zhang, D. [2 ]
Li, Y. [1 ]
Yang, Q. M. [1 ]
机构
[1] Shandong Univ Sci & Technol, Sch Mech & Elect Engn, Qingdao 266590, Peoples R China
[2] Lanzhou Univ Technol, Res Ctr Solar Energy & Gas Hydrate, Lanzhou 730050, Peoples R China
关键词
Solar-assisted heat pump; Direct-expansion; Water heater; Coefficient of performance; Collector efficiency; EXERGY ANALYSIS; COLLECTORS; SYSTEMS; OPTIMIZATION; ENERGY;
D O I
10.1016/j.energy.2011.10.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m(2), an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6830 / 6838
页数:9
相关论文
共 50 条
  • [31] Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system
    Zhang, D.
    Wu, Q. B.
    Li, J. P.
    Kong, X. Q.
    APPLIED THERMAL ENGINEERING, 2014, 73 (01) : 522 - 528
  • [32] Operation control strategy of direct-expansion solar-assisted heat pump system for heating
    Kong X.
    Xu X.
    Zhang P.
    Yan X.
    Li Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (08): : 38 - 44
  • [33] Experimental performance analysis and optimization of a direct expansion solar assisted heat pump water heater
    Li, Yuwu
    Wang, Ruzhu
    Wang, Taihua
    Wu, Jingyi
    Xu, Yuxiong
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2007, 28 (05): : 464 - 471
  • [34] Modeling and experimental analysis of the solar radiation in a CO2 direct-expansion solar-assisted heat pump
    Paulino, Tiago de Freitas
    de Oliveira, Raphael Nunes
    Torres Maia, Antonio Augusto
    Palm, Bjorn
    Machado, Luiz
    APPLIED THERMAL ENGINEERING, 2019, 148 (160-172) : 160 - 172
  • [35] Thermodynamic analysis of a direct expansion solar assisted heat pump water heater
    Yousefi, Masoud
    Moradali, Misagh
    JOURNAL OF ENERGY IN SOUTHERN AFRICA, 2015, 26 (02) : 110 - 117
  • [36] Performance evaluation method of solar-assisted heat pump water heater
    Huang, B. J.
    Lee, C. P.
    APPLIED THERMAL ENGINEERING, 2007, 27 (2-3) : 568 - 575
  • [37] Experimental Research on the Performance of a Middle-scale Direct-expansion Solar-assisted PVT Heat Pump System
    Jiang, Shan
    Yao, Jian
    Liu, Wenjie
    Jia, Teng
    Zheng, Sihang
    Zhao, Yao
    Dai, Yanjun
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (11): : 2934 - 2940
  • [38] A variable frequency control method and experiments of a direct-expansion solar-assisted heat pump system
    Kong, Xiangqiang
    Sun, Penglong
    Jiang, Kailin
    Dong, Shandong
    Li, Ying
    Li, Jianbo
    SOLAR ENERGY, 2018, 176 : 572 - 580
  • [39] Energy and exergy analysis of a new direct-expansion solar assisted vapor injection heat pump cycle with subcooler for water heater
    Chen, Jiaheng
    Yu, Jianlin
    SOLAR ENERGY, 2018, 171 : 613 - 620
  • [40] Distribution characteristics of refrigerant in microchannel collector/evaporator of direct-expansion solar-assisted heat pump
    Kong X.
    Ma T.
    Ma S.
    Li Y.
    Li J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (08): : 236 - 244