Quantum graph vertices with permutation-symmetric scattering probabilities

被引:3
|
作者
Turek, Ondrej [1 ]
Cheon, Taksu [1 ]
机构
[1] Kochi Univ Technol, Phys Lab, Kochi 7828502, Japan
关键词
Scattering matrix; Singular vertex; Equal transmission; Quantum wire;
D O I
10.1016/j.physleta.2011.09.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Boundary conditions in quantum graph vertices are generally given in terms of a unitary matrix U. Observing that if U has at most two eigenvalues, then the scattering matrix S(k) of the vertex is a linear combination of the identity matrix and a fixed Hermitian unitary matrix, we construct vertex couplings with this property: For all momenta k, the transmission probability from the j-th edge to l-th edge is independent of (j, l), and all the reflection probabilities are equal. We classify these couplings according to their scattering properties, which leads to the concept of generalized delta- and delta'-couplings. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3775 / 3780
页数:6
相关论文
共 50 条
  • [31] Conditional probabilities in quantum mechanics from a time-symmetric formulation
    Miller, DJ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1997, 112 (12): : 1577 - 1592
  • [32] Probing scattering mechanisms with symmetric quantum cascade lasers
    Deutsch, Christoph
    Detz, Hermann
    Zederbauer, Tobias
    Andrews, Aaron M.
    Klang, Pavel
    Kubis, Tillmann
    Klimeck, Gerhard
    Schuster, Manfred E.
    Schrenk, Werner
    Strasser, Gottfried
    Unterrainer, Karl
    OPTICS EXPRESS, 2013, 21 (06): : 7209 - 7215
  • [33] Constructing quantum games from symmetric non-factorizable joint probabilities
    Chappell, James M.
    Iqbal, Azhar
    Abbott, Derek
    PHYSICS LETTERS A, 2010, 374 (40) : 4104 - 4111
  • [34] Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos
    Seshadri, Akshay
    Madhok, Vaibhav
    Lakshminarayan, Arul
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [35] Scattering quantum walk search algorithm on star graph
    Liu Yan-Mei
    Chen Han-Wu
    Liu Zhi-Hao
    Xue Xi-Ling
    Zhu Wan-Ning
    ACTA PHYSICA SINICA, 2015, 64 (01)
  • [36] Average scattering entropy for periodic, aperiodic and random distribution of vertices in simple quantum graphs
    Silva, Alison A.
    Andrade, Fabiano M.
    Bazeia, D.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 141
  • [37] Marking Vertices to Find Graph Isomorphism Mapping Based on Continuous-Time Quantum Walk
    Wang, Xin
    Zhang, Yi
    Lu, Kai
    Wang, Xiaoping
    Liu, Kai
    ENTROPY, 2018, 20 (08)
  • [38] Coherence as resource in scattering quantum walk search on complete graph
    Yun-Long Su
    Si-Yuan Liu
    Xiao-Hui Wang
    Heng Fan
    Wen-Li Yang
    Scientific Reports, 8
  • [39] Coherence as resource in scattering quantum walk search on complete graph
    Su, Yun-Long
    Liu, Si-Yuan
    Wang, Xiao-Hui
    Fan, Heng
    Yang, Wen-Li
    SCIENTIFIC REPORTS, 2018, 8
  • [40] Quantum star-graph analogues of PT-symmetric square wells
    Znojil, Miloslav
    CANADIAN JOURNAL OF PHYSICS, 2012, 90 (12) : 1287 - 1293