On the Rate of Convergence by Generalized Baskakov Operators

被引:0
|
作者
Gao, Yi [1 ]
Wang, Wenshuai [2 ]
Yue, Shigang [3 ]
机构
[1] Beifang Univ Nationalities, Sch Math & Informat Sci, Ningxia 750021, Peoples R China
[2] Ningxia Univ, Sch Math & Comp Sci, Ningxia 750021, Peoples R China
[3] Lincoln Univ, Sch Comp Sci, Lincoln LN6 7TS, England
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2015/564854
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We firstly construct generalized Baskakov operators V-n,V-alpha,V-q(f;x) and their truncated sum B-n,B-alpha,B-q(f;gamma(n),x). Secondly, we study the pointwise convergence and the uniform convergence of the operatorsV(n,alpha,q)(f;x), respectively, and estimate that the rate of convergence by the operatorsV(n,alpha,q)(f;x) is 1/n(q/2). Finally, we study the convergence by the truncated operators B-n,B-alpha,B-q(f;gamma(n),x) and state that the finite truncated sum B-n,B-alpha,B-q(f;gamma(n),x) can replace the operators V-n,V-alpha,V-q(f;x) in the computational point of view provided that lim(n ->infinity) root n gamma(n) = infinity.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Generalized Bivariate Baskakov Durrmeyer Operators and Associated GBS Operators
    Rani, Mamta
    Rao, Nadeem
    Malik, Pradeep
    FILOMAT, 2022, 36 (05) : 1539 - 1555
  • [32] Stancu-Variant of Generalized Baskakov Operators
    Rao, Nadeem
    Wafi, Abdul
    FILOMAT, 2017, 31 (09) : 2625 - 2632
  • [33] Durrmeyer type modification of generalized Baskakov operators
    Erencin, Aysegul
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4384 - 4390
  • [34] Some approximation properties of the generalized Baskakov operators
    Patel, Prashantkumar
    Mishra, Vishnu Narayan
    Orkcu, Mediha
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (03) : 611 - 622
  • [35] On the rate of convergence of two generalized Bernstein type operators
    Lian, Bo-yong
    Cai, Qing-bo
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2020, 35 (03) : 321 - 331
  • [36] On the rate of convergence of two generalized Bernstein type operators
    Bo-yong Lian
    Qing-bo Cai
    Applied Mathematics-A Journal of Chinese Universities, 2020, 35 : 321 - 331
  • [37] On the rate of convergence of two generalized Bernstein type operators
    LIAN Bo-yong
    CAI Qing-bo
    Applied Mathematics:A Journal of Chinese Universities, 2020, 35 (03) : 321 - 331
  • [38] Approximation properties for generalized Baskakov-type operators
    Atakut Ç.
    Serenbay S.K.
    Büyükyazici İ.
    Mathematical Sciences, 2013, 7 (1)
  • [39] Bèzier variant of the generalized Baskakov Kantorovich operators
    Goyal M.
    Agrawal P.N.
    Bollettino dell'Unione Matematica Italiana, 2016, 8 (4) : 229 - 238
  • [40] Generalized Baskakov-Szász type operators
    Agrawal, P.N.
    Gupta, Vijay
    Sathish Kumar, A.
    Kajla, Arun
    Applied Mathematics and Computation, 2014, 236 : 311 - 324