On the Rate of Convergence by Generalized Baskakov Operators

被引:0
|
作者
Gao, Yi [1 ]
Wang, Wenshuai [2 ]
Yue, Shigang [3 ]
机构
[1] Beifang Univ Nationalities, Sch Math & Informat Sci, Ningxia 750021, Peoples R China
[2] Ningxia Univ, Sch Math & Comp Sci, Ningxia 750021, Peoples R China
[3] Lincoln Univ, Sch Comp Sci, Lincoln LN6 7TS, England
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2015/564854
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We firstly construct generalized Baskakov operators V-n,V-alpha,V-q(f;x) and their truncated sum B-n,B-alpha,B-q(f;gamma(n),x). Secondly, we study the pointwise convergence and the uniform convergence of the operatorsV(n,alpha,q)(f;x), respectively, and estimate that the rate of convergence by the operatorsV(n,alpha,q)(f;x) is 1/n(q/2). Finally, we study the convergence by the truncated operators B-n,B-alpha,B-q(f;gamma(n),x) and state that the finite truncated sum B-n,B-alpha,B-q(f;gamma(n),x) can replace the operators V-n,V-alpha,V-q(f;x) in the computational point of view provided that lim(n ->infinity) root n gamma(n) = infinity.
引用
收藏
页数:6
相关论文
共 50 条