Drosophila antimicrobial peptides

被引:39
|
作者
Bulet, P [1 ]
机构
[1] IBMC, CNRS, UPR Reponse Immunitaire & Dev Insectes 9022, F-67000 Strasbourg, France
来源
M S-MEDECINE SCIENCES | 1999年 / 15卷 / 01期
关键词
D O I
10.4267/10608/1192
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Insects are remarkably resistant to microbial infections. Their host defense relies on cellular and humoral responses. The cellular mechanism involves phagocytosis and encapsulation of pathogens. The humoral response includes activation of proteolytic cascades leading to coagulation and melanization and synthesis of antimicrobial pep tides acting in the hemolymph to fight the infection. Over the last years, Drosophila melanogaster has become a favourite model to investigate the molecular mechanisms of insect immunity. In Drosophila seven distinct molecules plus isoforms have been characterized, the antibacterial peptides cecropins, defensin, drosocin, diptericin and attacins, the antifungal drosomycin and metchnikowins which are active against both bacteria and fungi. These molecules belong to the 4 families of insect antimicrobial peptides namely (1) peptides forming a helices, (2) cysteine-rich peptides, (3) proline-rich peptides and (4) peptides with a high content in glycine residues. These antibiotics have in common a positive net charge which allows them to interact with the membrane of the microorganisms. nisms. In response to an experimental infection, the overall hemolymph concentration of Drosophila antimicrobial peptides synthesized by the fat body (a functional equivalent of the mammalian liver) reaches the value of 200 mu M, half of which is accounted for drosomycin. Recent studies on the regulation of the antimicrobial peptide gene expression during the systemic Drosophila immune response has revealed striking similarities with vertebrate innate immunity.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条
  • [41] Worms' Antimicrobial Peptides
    Bruno, Renato
    Maresca, Marc
    Canaan, Stephane
    Cavalier, Jean-Francois
    Mabrouk, Kamel
    Boidin-Wichlacz, Celine
    Olleik, Hamza
    Zeppilli, Daniela
    Brodin, Priscille
    Massol, Francois
    Jollivet, Didier
    Jung, Sascha
    Tasiemski, Aurelie
    MARINE DRUGS, 2019, 17 (09)
  • [42] Antimicrobial peptides in action
    Leontiadou, Hari
    Mark, Alan E.
    Marrink, Siewert J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (37) : 12156 - 12161
  • [43] Antimicrobial Peptides in the Brain
    Su, Yanhua
    Zhang, Kai
    Schluesener, Hermann J.
    ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, 2010, 58 (05) : 365 - 377
  • [44] Antimicrobial β-Peptides and α-Peptoids
    Godballe, Troels
    Nilsson, Line L.
    Petersen, Pernille D.
    Jenssen, Havard
    CHEMICAL BIOLOGY & DRUG DESIGN, 2011, 77 (02) : 107 - 116
  • [45] Antimicrobial peptides in Echinoderms
    Li, C.
    Haug, T.
    Stensvag, K.
    ISJ-INVERTEBRATE SURVIVAL JOURNAL, 2010, 7 (01): : 132 - 140
  • [46] A Crosstalk on Antimicrobial Peptides
    Ankita Borah
    Bornali Deb
    Supriyo Chakraborty
    International Journal of Peptide Research and Therapeutics, 2021, 27 : 229 - 244
  • [47] Psoriasis and Antimicrobial Peptides
    Takahashi, Toshiya
    Yamasaki, Kenshi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 17
  • [48] Bioprospecting for Antimicrobial Peptides
    Philip, K.
    Sinniah, S. K.
    Muniandy, S.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2008, 12 : E401 - E402
  • [49] Antimicrobial peptides for leishmaniasis
    Cobb, Steven L.
    Denny, Paul W.
    CURRENT OPINION IN INVESTIGATIONAL DRUGS, 2010, 11 (08) : 868 - 875
  • [50] Antimicrobial Peptides and Their Assemblies
    Carmona-Ribeiro, Ana Maria
    FUTURE PHARMACOLOGY, 2023, 3 (04): : 763 - 788