Solar Radiation Prediction Based on Convolution Neural Network and Long Short-Term Memory

被引:35
|
作者
Zhu, Tingting [1 ,2 ]
Guo, Yiren [1 ]
Li, Zhenye [1 ]
Wang, Cong [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Peoples R China
[2] Southeast Univ, Key Lab Measurement & Control Complex Syst Engn, Minist Educ, Nanjing 210096, Peoples R China
关键词
solar radiation; inter-hour forecast; Siamese network; convolution neural network; long short-term memory; IRRADIANCE FORECAST; HYBRID MODEL; ARMA;
D O I
10.3390/en14248498
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photovoltaic power generation is highly valued and has developed rapidly throughout the world. However, the fluctuation of solar irradiance affects the stability of the photovoltaic power system and endangers the safety of the power grid. Therefore, ultra-short-term solar irradiance predictions are widely used to provide decision support for power dispatching systems. Although a great deal of research has been done, there is still room for improvement regarding the prediction accuracy of solar irradiance including global horizontal irradiance, direct normal irradiance and diffuse irradiance. This study took the direct normal irradiance (DNI) as prediction target and proposed a Siamese convolutional neural network-long short-term memory (SCNN-LSTM) model to predict the inter-hour DNI by combining the time-dependent spatial features of total sky images and historical meteorological observations. First, the features of total sky images were automatically extracted using a Siamese CNN to describe the cloud information. Next, the image features and meteorological observations were fused and then predicted the DNI in 10-min ahead using an LSTM. To verify the validity of the proposed SCNN-LSTM model, several experiments were carried out using two-year historical observation data provided by the National Renewable Energy Laboratory (NREL). The results show that the proposed method achieved nRMSE of 23.47% and forecast skill of 24.51% for the whole year of 2014, and it also did better than some published methods especially under clear sky and rainy days.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Hybrid Long Short-Term Memory Fused Convolution Neural Network for Weather Forecasting
    Myilvahanan, J. Karthick
    Sundaram, N. Mohana
    Santhosh, R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (09)
  • [22] Convolution Neural Network Bidirectional Long Short-Term Memory for Heartbeat Arrhythmia Classification
    Rami S. Alkhawaldeh
    Bilal Al-Ahmad
    Amel Ksibi
    Nazeeh Ghatasheh
    Evon M. Abu-Taieh
    Ghadah Aldehim
    Manel Ayadi
    Samar M. Alkhawaldeh
    International Journal of Computational Intelligence Systems, 16
  • [23] A Convolution Bidirectional Long Short-Term Memory Neural Network for Driver Emotion Recognition
    Du, Guanglong
    Wang, Zhiyao
    Gao, Boyu
    Mumtaz, Shahid
    Abualnaja, Khamael M.
    Du, Cuifeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4570 - 4578
  • [24] Stock Price Prediction Using Time Convolution Long Short-Term Memory Network
    Zhan, Xukuan
    Li, Yuhua
    Li, Ruixuan
    Gu, Xiwu
    Habimana, Olivier
    Wang, Haozhao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2018), PT I, 2018, 11061 : 461 - 468
  • [25] Three-Phase Load Prediction-Based Hybrid Convolution Neural Network Combined Bidirectional Long Short-Term Memory in Solar Power Plant
    Lee, Chien-Hsing
    Phuong Nguyen Thanh
    Yeh, Chao-Tsung
    Cho, Ming-Yuan
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2022, 2022
  • [26] Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network
    Michael, Neethu Elizabeth
    Hasan, Shazia
    Al-Durra, Ahmed
    Mishra, Manohar
    APPLIED ENERGY, 2022, 324
  • [27] Combined Prediction of Photovoltaic Power Based on Sparrow Search Algorithm Optimized Convolution Long and Short-Term Memory Hybrid Neural Network
    Li, Shun
    Yang, Jun
    Wu, Fuzhang
    Li, Rui
    Rashed, Ghamgeen Izat
    ELECTRONICS, 2022, 11 (10)
  • [28] Sea surface temperature prediction model based on long and short-term memory neural network
    Li, Xiaojing
    3RD INTERNATIONAL FORUM ON GEOSCIENCE AND GEODESY, 2021, 658
  • [29] Wind Power Prediction based on Recurrent Neural Network with Long Short-Term Memory Units
    Dong, Danting
    Sheng, Zhihao
    Yang, Tiancheng
    2018 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE 2018), 2018, : 34 - 38
  • [30] Efficient Prediction for Vortex Induced Vibration Based on Long Short-term Memory Neural Network
    Xiao, Yucheng
    Li, Liang
    Xu, Mingze
    Ship Building of China, 2023, 64 (05) : 130 - 145